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Automatic Verification of Serializers

Russell Roger Atkinson

"‘f | ! Abstract

: i This thesis is concerned with the problem of controlling concurrent access to shared
b ’ data. A language construct is proposcd to enforce such control; a specification language

| is defined to describe the formal requirements of such control; and verification
techniques are given to prove that instances of the construct satisfy their specifications.
3 The techniques are justified in terms of the definition of the construct and the
1 definition of the specification language. Results are given for a program that

‘ implements a number of the techniques, illustrated by verifying several versions of the
readers-writers problem. Interactions between instances of the construct are discussed
in the context of a simple file system.
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1. Introduction

This thesis is concerned with the problem of controlling concurrent access to

shared resources. In systems where several processes may attempt to concurrently

U i s e Ui L A R, o YA BN 1 o SR

‘ ’ access the same resource, there is a nced o impose some order on those accesses. If
i certain orders arc not enforced, certain classes of access to the resource may conflict and
_:.‘ cause crroncous results. Other classes of access to the same resource may proceed
; i concurrently without conflict. This is true whether the resource is a data base, a printer

é-.‘v spooler, a file system, or a communications network, although the definition of the f

classes of access may be specific to the resource. ‘

Given this framework, we can informally define a few terms. T'wo accesses are *

concurrent if both accesses have started, yet neither has completed. Typically, !

concurrent access is controlled through exclusion, where a process executing one class i i

of access prevents the initiation of another access from any of a sct of classes. When
onc access excludes another, the latter must wait for the former to complete. If one

access is waiting for another, which is waiting for the first 1o complete, then no progress

R NV

can be made on cither, which is called deadlock. 1T two processes are ready to initiate

accesses, yet one access excludes the other, then the process that proceeds is said to have
priority over the other. A process that is ready to proceed, yet is continually denied

progress, sulfers from starvation.

We wish to ensure that programs executing concurrently on shared resources

i obtain correct results, where correctness is defined in terms of programs mecting their

specifications, We wish to show, for properly designed programs, that certain accesses

-8-
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3 * The design of a program to make use of this methodology and perform |
; i verification.
: }
{
J Onc of the contributions of this thesis is that all of these elements are presented
; ' together for a single construct,
3 ; Our approach to concurrency control is heavily influenced by by the monitor
construct of [Brinch Hansen 72] and [Hoare 74], and the programming languages CLU
“ " [Liskov et. al. 77, Liskov 79a] and Alphard [Wulf 78], which in turn owe much to Simula
, [Dahl 72]. In these languages, access to data objects is achieved through a limited set of
il operations, which are generally implemented as procedures. Just as CLU and Alphard
! scparate implementation details from the abstract appearance of data objects, our
B objective is 1o separate concurrency control from access to data objects. The monitor

construct has a similar goal, although a slightly different view ol data. The connection
between concurrency control and data abstraction is a key issue in defining our

construct and in our verification technigues.

Verification docs not prove that programs operate correctly, in the sense that a

TN

verilied program performs exactly as desired. There is often no reason to believe that
the specifications are better than the program text for describing the desired behavior

for the program. Verification performs the task of taking two different descriptions of a

behavior that the program exhibits is allowed by the specilications. The (wo

!
‘ . problem solution and showing that the descriptions agree, in the sense that every
{
\
1

descriptions are guite different in kind: the code is an algorithmic description, and the

specifications describe the effects of executing the code. The confirmation of arriving at

-10 -
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We propose 1o make use of the following kinds of modularity:

* Data abstraction is the organization of data into distinct objects, where

cach object belongs to a distinct data type, and direct access to the objects
‘ of any type is limited to the operations of the type. This definition of data
3 ! abstraction follows the lead of the CLU programming language.

Cm - —— o

- * Concurrency control is separated from data access. The implementation

- of concurrency control is kept distinct from the implementation of data ;
access, although the external interface of the two implementations may be

- similar.

: * Specifications of concurrency control are separated from specifications of
' other propertics of a program. Further, these specifications are meant to
be independent of any implementation.

* Verification of concurrency control is separated from other program

’ verification techniques. In particular, the verification of access to a
= resource and the verification of the concurrency control for such access
K | are independent, although each may assume the specifications of the
) other (we will assume an absence of circularity, since it is a scparable
issuc).

It is possible to find fault with modularity, since the kinds of scparation we

& have described may make it more difficult to acheive other desirable propertics.

; * The principle of modularity can be misapplicd: the wrong kind of

{ separation prevents necessary data from being communicated from one

i place 1o another. We hope to show through the use of examples that the
'l kinds of modularity we propose to use do not prohibit necessary
: information from being in the appropriate places.

-12 -
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* Modularity can be inefficient: the mechanism for transferring from one
context to another, as in a procedure call or process switch, can be
expensive.  Further, by limiting access to certain data, certain
computations may be redundant. We will not address this issue directly
in this thesis, but will return to this objection in our conclusions.

1.3 Related work

Much of the initial work on the construct we propose was done in conjunction
with Carl Hewitt [Hewitt and Atkinson 79]. Since then, there has been a divergence in
our cfforts; this thesis explores issues of automatic verification of concurrency control,
while Hewitt has concentrated on more primitive control of concurrency in a context
where programs communicate by passing messages. Some of this work can be found in

[Hewitt, Attardi, and Lieberman 79).

Below we briefly discuss related work on language constructs, concurrency

specifications, semantic models, and some differences in our approach from other work.

1.3.1 Related language constructs

Most authors in this arca note the importance of limiting the interactions
between concurrent processes through the use of language constructs specilically
designed for this purpose. We have a similar approach in this thesis, with the addition

that we attempt to relate concurrency control to abstract (user-defined) data types.

-13-
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We have already noted the intellectual debt owed to the monitors of Brinch
Hansen and Hoare. For now, we characterize the monitor approach by noting that
concurrency is controlled by only allowing one process at a time to exccute an operation
that belongs to a monitor. Given that initial cxclusion, further execution orders may be
imposed by the monitor operations. We will present a more detailed comparison of our

construct with monitors in Chapter 2.

Another line of thought in concurrency control is to limit parallel processes to
communicating through the passing of messages. Various authors have proposed such
an approach, among them [Good, Cohen and Kecton-Williams 79, Hoare 78,
Feldman 79). Concurrent actions only proceed when a process that is sent a message
chooses 1o receive it. Exclusion for a class of access derives from a refusal to accept a
message of that class. This approach is particularly well suited to distributed systems,

where different processes may reside on widely separated processors.

These two approaches are not as different as they might initially appear.
Although our presentation will follow the first approach, we will arguc in this thesis that

our techniques are valid for the second approach as well.

-14 -
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1.3.2 Concurrency specifications

Our work on specifications is strongly influenced by Greif [Greif 75). In this
approach, certain events related to an access are identified: access request, access start,
_ l and access finish, Specifications are given by indicating which orders of these events

are required. For example, suppose that the execution of one kind of access (call it X)
prevents another kind of access (call it Y) from starting. We can specify this
X requirement by stating that no Y access start event can occur between any X access start

event and the corresponding X access finish event,

E | A similar approach to specifications appears in [Laventhal 78], in which such

specifications are used to synthesize implementations to realize concurrency control.

1.3.3 Related semantic nrodels

Various modcls have been used o describe concurrent execution of programs.

In the models we discuss here, a program proceeds from state to state by atomic actions.

* In [Howard 76, Good, Cohen and Keeton-Williams 79, and in our work,
actions that take place are recorded in sequences called histories, and
program semantics are described by giving predicates that must be
satisfied for historices.

*In [Greif 75], actions are related by partial orders called  behaviors.
Program behavior is given by predicates on these partial orders.

-15-
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* In temporal logic (a survey-level explanation of this model appears in
flLamport 80]) the model uses sequences of states, rather than actions.
Predicates that describe program behavior may be applied 10 sequences

’ l of states, for a linear time theory, or to all sequences of states with a
; common scquence of states as a prefix, for a branching time theory.

¢ e——

’ * Another related model, based on trees of states, is prescnted in

‘ [Owicki 75). Given an initial state and a program, the behavior of the
program is characterized by a tree of states, where the arcs represent
execution of an action that leads to the next state,

All of the above models use some structure to relate either states or actions, and

describe program behavior by giving predicates on such structures.

It is possible to discuss states in terms of equivalence classes of historics (or

E | behaviors). For cxample:

[There] is a correspondence between states and behavior that allows one 1o
define the states of a system as an equivalence relation over the possible
behaviors. [Greif 75, p. 72]

We believe it better to think of predicates on historics rather than to attempt to regard

states as equivalence classes. ‘The distinction lies in our concern with certain propertics

B of objects at any particular time, rather than the entire state of the object.

|
i |
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1.3.4 Differences in our work

We approach concurrency control not just by defining a fanguage construct,
but also by providing specification and verification methods for the construct. Further,
these methods are actually demonstrated in a simple automatic verifier. By providing a
wide range of support for a relatively narrow construct we hope to illustrate the benefits

of a unified approach to controlling concurrent access {0 resources.

We have attempted a greater use of modularity than is commonly found in .
other works. In particular, we couple control of concurrent access to the principles of
data abstraction with strong typing, while maintaining scparation of concurrency

control specification and verification from data access specification and verification,

1.4 Plan of thesis

Chapter 2 introduces the serializer language construct, which is a method for
controfling concurrent access. An informal presentation is made of the syntax and
semantics of the construct.  An cxample, based on the rcaders-writers problem, is
discussed in detail. A simplification of the serializer construct is defined for use in later
chapters, A translation of scrializers into clusters and semaphores is given as a possible

implementation strategy.

Chapter 3 presents a simple semantic model that supports concurrency, and

'; uses it to define more precisely the simplified serializer construct. A definition

lainguage based on first-order predicate calculus is used to deseribe serializers as

-17 -
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enforcing limitations on the execution order of programs.

Chapter 4 discusses the four kinds of concurrency control specifications used
in this thesis. A simple specification language for concurrency control is defined.

Specifications are given for the readers-writers problem, with several variations, and the

bounded buffer problem.

Chapter § presents and justifics rules that are uscd to verify that serializers
meet their specifications.  Although the definition of serializer semantics and the
] definition of the specification language are sufTicient to allow us to verify serializers, it
would be difficult to write an automatic verifier that directly uscs these definitions.
Therefore we define and prove a number of inference rules that allow us to infer

specification clauses given the assumption (or proof) of other specification clauses,. An

example is given of how the rules allow verification in a simple mechanical fashion,

Chapter 6 describes a program that uses the verification rules to establish that

a serializer meets its specifications. We first describe how the structure of the program
incorporates the verification rules, and then present examples of proofs that the

program has performed.

Chapter 7 discusses issues related o interaction of serializers, and presents an

extended example of scrializer usage: o simple hicrarchical filing system. Guidcelines

are given for providing scrializers for data types that are onginally used in a

single-process environment.

A e oW ey SN TR T e ‘“-“7 Pl




Chapter 8 contains a discussion of how the work in the previous chapters can

be extended to cover more complex problems and more complex seriatizers.

Several examples of serializers are presented in the appendices, and are

referred to from time to time in the body of the thesis. The last appendix presents a

table showing where the various definitions and rules used in this thesis are defined.
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2. Secrializers

This chapter introduces the serializer construct, which is intended 1o provide a
modular method of concurrent access to shared data objects. Related programming
language constructs are monitors {Brinch Hansen 72, Hoare 74), path expressions

[Campbell and Habermann 74), and communicating scguential processes [Hoare 78).

We treat the serializer construct as an extension o the CLU programming
language [Liskov et. al. 77, Liskov 79a). However, the basic ideas behind serializers go
beyond any particular programming language. Earlicr versions of the serializer
construct were presented in [Hewitt and Atkinson 77] and [Hewitt and Atkinson 79]

using a significantly different language,

In this chapter we describe the rationale for the design of the serializer
construct, informally define the syntax and semantics of serializers, and present an
example of a serializer. Then we describe the limited version of serializers that we will

be using in the remaining chapters, give a possiblc implementation of serializers in

terms of semaphores, and compare the serializer and monitor constructs.
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2.1 Secrializer design issues

We believe that a fanguage construct for controlling concurrent access to

shared objects should have the following qualities:

* The shared objects should be separated into identifiable sets of objects,
cach set being a resource. A resource should also be treated as an object,
allowing resources to be composed from other resources. Each resource
can only be directly accessed through a set of operations associated with

the resource.

* The construct should scparate control of concurrency from the algorithms
that access the resource. This separation simplifies both the concurrency
control and the resource access. Some concurrency may be lost by
requiring complete separation, since it is likely to be difficult to partially
overlap operations. However, we believe that the added simplicity is well
worth the reduced concurrency.

*To aid reliability and verifiability, the shared resource should not be
accessed except through an object that controls access to the resource.
The concurrency control construct should enforce this restriction, since
relying on programmers to follow conventions is not satisfactory.

* To case the writing of programs that access resources, operations that
access the object controlling the resource should appear to be, as nearly as
practical, the same as the operations that access the resource. ‘That is, the
construct that controls concurrency should have the same appearance o »
the user as the construct used for the resouree. )

-21-
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! Based on these criteria, we designed the serializer construct to have the

[ following characteristics:

* Like the cluster construct of CLU, the scrializer construct is usced to
' define data types by delining a set of operations for cach type. The
' objects of a data type defined by the scrializer construct are called
serializer objects. Each serializer object is used to control a separate
resource object. The operations of the data type are serializer operations.
For the sake of modularity, scrializer objects can only be accessed
through the appropriate serializer operations.

a2

* The execution of protected parts of a scrializer operation for a particular

L serializer object precludes the simultancous execution of protected parts
kL of any serializer operation on the same serializer object. The process
E exceuting a protected part of an operation is said to have possession of the

scrializer object.

-y
*

During the exccution of a scrializer operation, possession of the serializer
object can be released and regained. It is particularly uscful to release
possession while accessing the resource, thereby permitting concurrent
activity involving the scrializer object.  After the resource access,
possession is regained to indicate that the access is complete.  This
temporary release of possession permits external procedures o be

¥
f‘ invoked from a scrializer operation while allowing other serializer
i operations to continue.

s * During the exccution of a serializer operation, it may become necessary to

suspend  execution o wait for some condition to become true.  For
cxample, if some operation needs exclusive aceess 1o the resource, it must
wait until no other resource accesses are in progress. During this pause,
possession of the serializer object is released o allow other requests o
proceed concurrently as far as they are able.

-

-22-
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Figure 1. A picture of a serializer object
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A graphical description of how the serializer construct is used is shown in

Figure 1. A Request is the start of an operation, and a Reply its termination (possibly

passing back irformation). The intended effect of the scrializer is to impose an ordering

on the requests and replies as they are transmitted between the resource and the
requesters. The (Pause) is optional, based on whether the resource access requested
can be performed immediately when the request enters the scrializer. In most cascs, a
serializer operation passes the information it receives from the caller to the
corresponding resource operation, and passes the information it receives from the

resouree operation 1o the caller,
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2.2 Serializer syntax and mechanism

"This scction gives a brief syntax for the serializer construct and the statcments
uscd only by serializers. We also give an informal description of what each form is used

for and how it works.

The syntax used for a scrializer is similar to the syntax used for a CLU cluster.

The header names the serializer and lists the externally available operations. Then the

representation type for the serializer is given, which determines the names to be used

PN

S

,’ for the components of the serializer object. Then the operations are given as
procedures. The form of a serializer is:
name = serializer is operation_name_{ist

rep = represenlation_type

operation_name = proc ( formal_arguments )
,_ optional_return_list
! optional_exception_list
procedure_body
end operalion_name
. . . % other operations

end name

W have used italics to informally indicate syntactic quantitics.

As with clusters, the scrializer construct delines a new data type, where the
type is denoted by name. Certain of the operations are used 1o create new scrializer
objects of the named type, while other operations are used to access the serializer

objects. Operations named in the operation_name_{ist ave the externally available

operations, and may be used by code outside of the serializer. Operations not named in

-24-




the operation_name_list may only be used internally. Starting the execution of any
externally available operation that directly uses the serializer object requires that the
exceuting process gain possession of the serializer object (starting execution is shown as
Request in Figure 1). Termination of an opcration that has possession releases
possession (termination is shown as Reply in Figure 1). To reduce the likelihood of
deadlock, an operation that has possession of a serializer object is prohibited from

directly calling another operation that requires possession of the same serializer objo.:ct.l

We have also added two new kinds of statements that can only be used in a
serializer. The enqueue statement is used to suspend execution (and release possession)
until some condition is satisficd (shown as (Pause) in Figure 1). The statement has the
form:

enqueue queue_cxpression until boolean_expression

The queuc_expression denotes a queue that is used to impose a first-in-first-out
disciplinc on processes waiting for conditions. The boolean_cxpression denotes the
condition that is required to be true before a process can continue exccution. Such a
condition is called a guarantee. When a process is waiting for the condition to be true,
we say that the process is wairing in the gqueue, since some identification of the process
is stored in the queue. When a process waiting in a queue is allowed to proceed, it
regains possession of the serializer object, the process identification is removed from the

queue, and the enqueae statement terminates.

1. In practice, it may not be possible 10 detect when this oceurs, This does not aftect our objective,
which is to reduce the chances for errors. We do not believe that it is possible for a inguage restriction to
completely climinate this kind of error withont unduly affecting the expressive power of the language.
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The queucs used in serializers are first-in-first-out unless otherwise spcciﬁcd:2
If some process starts exccution of an enqueue statement before another process starts
execution of an enqueue statement for the same queue, the first process will complete
execution of the enqueue statement before the sccond process, provided that cither

statement terminates.

The join statement is used to perform some body of statements that should be
executed while not in possession of the serializer object. The statement has the form:
join crowd_expression

body_of_statements
end

A crowd_expression denotes a set used to identify the processes that have started
executing a join statement but not completed it. There may be several such sets, called
crowds, so that different classes of access can be dislinguishcd.3 The join statement
starts by placing some identification of the exccuting process into the specified crowd

and releasing possession (shown as Request® in Figure 1). After possession is released,

the body_of_statements is cxecuted. Finally, possession is regained (shown as Reply® in
Figure 1), the process identification is removed from the crowd, and cxecution
continues after the end of the join statement. Typically, a join inside of an operation is

performed to invoke the corresponding operation of the resource.,

..

2. Anexample of the use of priovity gueues appears in Appendix 1,

{ 1. The joim statement is so called because the provess exeeuting the statement foins a crowd of similar
{ processes. 1 not be confused with fork and join primitives used for process ereation and teriinadion in
!

i other Linguages.

!

|
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A process attempting to start or continue exccution of an operation on a
serializer object must wait until there is no other process that has possession of the
scrializer object. I the process is waiting for some condition to be satisfied, it does so in
an explicitly named queue of an enqueue statement. If the process is waiting to gain
possession at the start of an operation or at the end of a join statement, it does so in an

implicit queuc called the external queue, which is serviced in first-in-first-out order.?

Possession of the scrializer object is relcased at the start of an enquecue
statement (after the process is placed on the queue), the start of a join statement (after
the process is placed in the crowd), and at the end of an operation. Whencver
possession is released, the explicit serializer queues are examined to determine whether
any queue has a process at its head with a true guarantee. If any of the guarantees are
true, then one of those associated wailing proces-es will get possession of the serializer,
and be removed from its queve. Then the process can proceed with the exccution of
the operation. In evaluating the guarantees, there is no assurance that the guarantees
will be evaluated in any particular order, or that they will all be evaluated unless all
evaluate o false. I all guarantecs are false, then the process on the external queue that

has waited the longest (if any) is removed from the queue and gains possession.

4. We have chosen to use a single external queae for simpiicity of explanation. Using a single external
queue is a valid implementation, although it is not the only valid implementation.
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2.3 An cexample: the readers-writers problem

The general readers-writers  problem  [Courtois, Heymans and Parnas 71]
presents a simple resource that is to be accessed by concurrent processes. There are two
operations on the resource, read and write. A process performing a rcad operation is
called a reader, while a process performing a write operation is called a writer. In
keeping with the serializer methodology, we have split the problem into writing a
cluster to implement the resource and constructing a serializer that encapsulates such a
resource. The basic constraint on concurrency is that readers should not access the
resource concurrently with writers, and writers should not access the resource
concurrently with other writers. The gencral readers-writers problem imposes no

further requirement on the order of processing for operations.

‘The example we present in Figure 2 has the requirement that if a read
operation on the serializer starts before a write operation on the serializer, the reader
will access the resource before that writer, and that this first-in-first-out (FIFQ)
ordering is also imposed on writers with respect to readers, and on writers with respect

to other writers. ‘This variant of the readers-writers problem is discussed in [Greil 75).

In the FIFO scrializer, there are three operations, one to create a new
serializer object (and new resource), one to read a value associated with a key in the
resource, one to write a value associated with a key in the resource. Only the serializer

operations that access the representation (rep) of a serializer object argument need o
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j‘*‘;’ Figure 2. FIFO serializer

" % The following serializer is a first-in-first-out solution to the
3 % readers-writers problem. |

FIFO = serializer is .
create, % Create a new serialized resource object
read, % Read a value from the resource given a key

l write % Write a value to the resource given a key

% Each serializer object has the following representation -

rep = record [rc: crowd, % readers' crowd
wc: crowd, % writers' crowd
Xxq: queue, % common queue

res: resource] % unserialized resource

create = proc () returns (cvt)
return (rep${rc: crowdScreate ().
wc: crowd$create ().
xq: queueScreate ().
res: resource$create () })

' end create
read = proc (x: cvt, k: key) returns (value)

% Wait until there are no active writers
engueue x.xq until crowd$empty (x.wc)

R, % Become an active reader & perform the read
g join x.rc
return (resource$read (x.res, k))
end
end read

write = proc (x: cvt, k: key, v: value)

L

5 % Wait unti) there are no active writers or readers

% enqueue x.xq until crowd$empty (x.rc) & crowdSempty (x.wc)

i

$l % Become an active writer & perform the write 1
- | join x.wc

i resource$write (x.res, k, v)

end

Q] end write

: end FIFO
-
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|
- gain possession of the serializer objcct.5 The use of evt as a type declaration for
3 ' arguments to operations indicates which arguments are scrializer objects viewed as their
representations, The use of cvt follows the CLU usage, in that it represents a type
conversion between abstract type and representation type that is performed at the
i
interface of an operation. Each serializer operation is limited to one cvt argument, since
there is no provision for gaining simultancous possession of multiple serializer objects.
Y > » N N H 1 2 .\ ) L) \6 2] H 2 1
Ihere is no restriction on the usc of evt used as a return type” (cven if we allow multiple
serializer objects to be returned).
i In the read operation of the FIFO serializer, the guarantee is
crowdSempty(x.wc). Therefore, no readers will begin to read from the resource until
3 there are no writers accessing the resource.  Similarly, in the write operation, the
guarantee is crowdSempty(x.rc) & crowd$empty(x.wc), which prevents a writer from
A procecding until neither readers nor writers are accessing the resource.
The importance of having sole possession of the serializer object can be
] illustrated by examining Figure 2 and considering the conscquences of not having such
8 a restriction.  For example, if a writer did not have sole possession of the scrializer
‘1 object after it performed its enqueue, another writer could access the resource between
> the first writer's execution of the enqueune statement and the join statement. This would
’ 5. The create aperation does not need 1o gain possession, since no processes other than the process
| exceuting the create operation could aceess the object.
4 t 6. Note that as an arguinent (ype description, €vE requires i conversion from abstract to representation
! [ type. and asa return type deseription, the conversion is from represeitation to abstract type.
[
3 .
! ;
i
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'f allow simultancous access to the resource by two writers, which violates our initial

1 ! requirements for the serializer.

2.4 Simple serializers

It is infeasible to present definition, specification, and verification techniques
for general serializers in this thesis. Therelore, we will restrict our attention to a limited

version called simple serializers. A simple serializer has the following restrictions:

T
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* The representation object (of type rep) for a simple serializer is a record
that may only contain a single resource object and a fixed number of
statically named queues and crowds.

*All queue and crowd expressions are  limited to selection of
representation components.

* The guarantees on the enqueue statements can only test for queuc$empty,
crowd$cmpty, the logical and (x & y) of guarantees, and the logical or
(x | y) of guarantees.

* Only enqueue and join statements may be executed while in possession of
the serializer object.

* Fuch serializer operations must correspond exactly in pumber, name, and
interface 1o a corresponding resource operation, No statements may be
execuled inside @ join statement except o invoke the corresponding
resource operation, returning its results if there are any. ‘This restriction
also prectudes the handling of exceptions.

* Inside of a simple serializer operation, the return statement docs not
immediately return an object from the operation, as it would in a normal
operation, Instead. it is used to indicate the object 10 be returned when
the serializer operation terminates, ‘This restriction is present (o simplify
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the semantic model in the next chapter.

While the above restrictions may seem severe, they allow us to keep our
presentation of details not associated with concurrency control to a rcasonable level.
Simple scrializers are sufficient to solve the readers-writers problem, as well as some

more involved examples.,

In several places throughout the thesis we will indicate how extensions to
simple serializers can be handled. These cxtensions include cases where more
compliéulcd computation must occur to determine the order of processing requests,
where the interface to the serializer differs from that of the underlying resource, and

‘ where the serializer and the resource are implemented together.

2.5 Using semaphores to implement serializers

i In this section we present a possible implementation of simple serializers using

R fair semaphores and clusters. We do this for two reasons:
K
X 1: To show that the serializer mechanism is realizable. 1
'i

, 2:To give further insight into the semantics of scrializers by giving a

4 ‘ translation into a more commonly understood mechanism.

LA

The semaphores that we use can be freely created, and obey a FIFO discipline when
multiple processes request the same semaphore. We also deseribe the operations on the

guene and crowd data types used in this implementation of serializers.
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We assume that the semaphore data type has the following operations:

create () returns (scmaphore)
returns a new scmaphore with count = 0.

P (S: scmaphore)
Atomically tests and sets the count of the given semaphore. If count
> 0, the count is decremented and the operation completes. [f count
= 0, then it stays 0 and the process performing the P operation does
not proceed until the count becomes positive. Once the count
becomes positive, the process waiting the longest decrements the
count and complctes the P operation.

V (S: scmaphore)
Atomically increments the count. Note that a P operation on an
initially crcated semaphore must wait for a corresponding V
operation.

We assume that the queue data type has the ollowing operations:

create () returns (queue)
creates a new, emply, queue,

eng (Q: queue, T semaphore, G: guar)
adds the T, G pair to the queue, making the queue non-cmpty. ‘The
type of G. the guarantee expression, is assumed 1o be a predicate to
indicate whether the guarantec is true,

deqg (Q: guceue) signals (empty)
removes the head pair if the queue is not empty, otherwise signals
empty.
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empty (Q: queue) returns (bool)
rcturns true if the queue is empty, false otherwise.

P 5. . ..

get_guar (Q: queuce) returns (guar) signals (cmpty)
returns the guarantee evaluation procedure at the head of the queue
il the queue is not empty, otherwise signals empty. Note that
; ' queuc$get_guar(Q) can also be written as Q.guar.

get_sem (Q: queue) returns (semaphore) signals (empty)
returns the secmaphore at the head of the queue if the gqueue is not i
empty, otherwise signals empty. Note that queue$get_sem(Q) can i
also be written as Q.sem.

We assume that the crowd data type has the following operations:

create () returns (crowd)
returns a new, cmpty, crowd.

insert (C: crowd, T: semaphore)
inserts a scmaphore into a crowd.

remove (C: crowd, T: semaphore) signals (absent)
removes a semaphore from a crowd if present, otherwise sighals

abscnt.

cmpty (C: crowd) returns (bool)

p*. returns true if the crowd is empty, false otherwise.
4
N1
J Implementing a scrializer as a cluster that uses semaphores is a translation that

has the following cases:

e e
»
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1: The serializer becomes a cluster, and the representation object is

‘ extended to include a sem component, which is of type semaphore; and

‘ an eval component, which is of type scquence[queue]. ‘The sem
component is called the external semaphore, and the eval component is
called the queue list.

’ 2: The create operation initializes the external semaphore to a newly created
: semaphore, and performs semaphore$V on it. The queue list X.ceval is
- initially the sequence of all queucs in the representation.

3: Each opcration that requircs possession is given the following prolog:

semaphore$P(X.sem)
T: semaphore := semaphore$new( )
where X is the name of the evt argument, and T is a unique local variable

used to hold a newly created semaphore for the transaction. T is used to
‘ represent the process in queues and crowds.

4: A return statement is translated into an assighment to a temporary
variable (or a multiple assignment if multiple return values are present).
This requires such variables to be declared in the prolog, and their values
returned in the epilog.

5: Each opcration that requires possession is given the following epilog:
Eval(X)
where the Eval procedure is an internal operation used to select the next
process 10 proceed, and will be detailed below.

: Fach statement of the form:

enqueue Q until G
is translated into:
queueSenq(Q, T, G') % place self in queue

&

Eval(X) % release possession
semaphore$P(Q.sem) % regain possession
queue$deq(Q) % remove self from queue

P b v “ A
vt 5 a2 L D2 S

where Q is the queue to use in the expression, T is the local semaphore
variable introduced in the prolog, and G is a procedure (described as

" -
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F type guar) used to evaluate G.

! 7: Each statement of the form:

H join C

¢ Body

’ end

} is translated into:
crowdSinsert{C, T) % place self in crowd
Eval(Xx) %4 release possession
Body % execute body
semaphore$P(X.sem) % regain possession ;
crowd$remove(C, T) % remove self from crowd .

where ¢ is the crowd to join, and Body is the body of statements to
execute while not in possession.

" The Eval procedure selects the next process 10 receive possession. 1t first
! . . -
' checks (in some unspecificd order) the non-empty queues to determine whether the

guarantee at the head of the gueue is true. The first non-cmpty gueue found with a true

guarantee has V performed on its head semaphore, and Eval returns. I no non-cmpty

queues are found with true guarantees, Vis performed on the external semaphore. Eval

can be written as:;

{ 7. A reader famitiar with CUU may notice that we hine taken some liberties in using G°, and have not
fully defined the type guar. In general, it is necessary 1o use a closiere of procedure and data to properly
define G We have avorded these issues for the sake of simplicity: they do nat atfect our approach

concurrency control,
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Eval = proc (X: rep)

5 — T B 1

% examine all queues for true guarantees
' for q: queue in sequence[queue]Selements(X.eval) do
if queueSempty(q) then % if queue is empty
cont inue % then examine next queue
end
if g.quar(X) then % if guarantee is true
' semaphore$V(q.sem) % then allow that process
return % to continue execution
end
end

% 20 non-empty queues have true guarantees
semaphore3V(X.sem) % serve the externa’ queue

end Eval

The above version of Eval always checks the queues in some particular order. It would

be equally valid to check the queuces in any order, even if non-deterministic.

| An example of how a serializer is implemented using clusters and semaphores
is shown in Figure 3. We have omitted the write operation, since there is li‘tle

difference from the read operation; and the Fval operation, since it was shown above.,

e e e

2.6 A comparison of serializers with monitors

‘The unrestricted serializer construct has many similarities to the monitor

construct [Brinch Hansen 72, Hoare 74, Both serializers and monitors  deal with j
H

" synchronization by e¢ncapsulating details of concurrency control within a set of

!:!

il procedures. We present a bricl comparison of the serializer and monitor constructs

)

-~

pregwrpememr=— 2 c T Sl il ant - DON



TR R

—

Figure 3. Semaphore implementation of FIFQO

FIFO = cluster is create, read, write

elist = sequence[queue]

rep = record [rc: crowd, % readers' crowd
we: crowd, % writers' crowd
xq: queue, % common queue
res: resource, % unserialized resource
eval: elist, % the queue list

sem: semaphore] % the external semaphore

create = proc () returns (cvt)

E: semaphore := semaphore$create()

semaphore$V(E)

Q: queue := queue$create()

return ( rep${rc: crowdScreate (),
wc: crowd$create (),
xq: Q,
res: resource$create (),
eval: elist$[Q].
sem: E } )

end create

read = proc (x: cvt, k: key) returns (value)

% Prolog
semaphore$p(x.sem)
T: semaphore := semaphore$create()
v: value

% enqueue x.xq until crowd$empty (x.wc)
queueSenq(x.xq, T, crowdSempty)
Eval(x)
semaphore$P(x.xq.sem)
queve$deq(x.xq)

% join x.rc; return (resource$read (x.res, k)): end
crowd$insert(x.rc, 1)
Eval(x)
v := resource$read(x.res, k)
semaphore$P(x.sem)
crowd$remove(x.rc, T)

% Epilog
Eval(x)
return (v)
end read

% The write operation is nol shown.

end FIFO




below.? Fxcept where noted, propertics of the monitor construct are taken from

[Hoare 74).

A scrializer abstraction is intended to have the same intcerface as the protected
resource, while the monitor appears to be a lock on access to the resource. The
serializer construct has the expressive power to be used as a lock, but the monitor does
not have the expressive: power to mimic the resource (without serious loss of
concurrcncy).9 The serializer and monitor constructs both protect the underlying
resource by controlling concurrent access to it, providing that the only access is through
the serializer or monitor. The serializer construct further protects the underlying
recsource by allowing the programmer (0 prevent access to the resource cxcept through
the scrializer. This protection can be achieved with monitors by having a data
abstraction encapsulating a monitor, such that both the resource and the monitor can
only be accessed through the data abstraction. Our preference is to provide this

appearance through a single construct.

The serializer construct allows possession of the scrializer object to be released
and regained in a controlled manner within a scrializer operation.  In the monitors
presented in [Hoare 74) there is no such provision. In an ¢xtension to monitors

[Lampson and Redell 79] it is possible to write operations that do not require possession

R. A comparison of an carlier version of serializers with monitors appears in JUHewitt and Atkinson 79).
An eviduation of seriatizers, monitors, and path expressions appears in [Bloom 79).

9. Extensions which  alleviate this problem hine heen made  for the monitors presented  in
{Uampson and Redell 79,




of the monitor. This alfows an opcration o be written that requires possession of the
monitor only for parts of the operation. ‘These protected parts are required to be
invocations of monitor operations that require possession. This solution is slightly more

complicated to usc than the serializer join statement, but is otherwise similar.

Serializers use explicit guarantees at the point in the procedure where a
process waits on a queue. That guarantee is true when the process proceeds (providing

that removing the process from the queue did not change the guarantee). Monitors also

have first-in-first-out queucs (called conditions), but the expressions that determine
which gueues are to be serviced next are distributed throughout the various procedures

p of the monitor, which complicates the verification task.

As mentioned briclly above, there is a basic difference the use of queues in

monitors and serializers. Processes in the same queue in serializers can be waiting for

different guarantees. Although the same ¢ffect can be achicved in monitors, it usually

requires extra code to do so, and is difficult to write and understand.

The scrializer construct, like the CLU cluster construct, supports sets of
objects belonging o an abstract type. "The monitors proposed in [Hoare 74] tend o

support one-of-a-kind encapsulation. ‘This difference is more a reflection of the base

, language nsed than a hasic difference between serializers and monitors, We mention
<4

& . . e 3 . - . .

F‘ this diffcrence because we believe that supporting sets of objects is a better choice o

make, since there is more potential concurrency in a system where data is partitioned

inlo separate objects.




2.7 Opportunities for optimization

Onc objection that might be raised to serializers is that they are inherently
inefTicient: at every release of possession the queucs must be checked to determine
whether the condition at the head of cach queuc is satisficd.!® For this objection we

have two answers:

1: 1t is unlikely that the evaluation of such conditions will be expensive
compared to the execution of resource operations.

2:In the event of the guarantee checking being a significant cost in a
program, optimization techniques arc ¢specially applicable in this limited
context.

As an example of how we might optimize the checking of guarantees, consider
the FIFO example. When a writer leaves the writers crowd, i is casy to prove that both
the readers and writers crowds are empty. This knowledge allows an optimizing
compiler o immediately dequeue the next transaction in the queue (if any) whenever a
writer completes. In such a case, no guarantee evaluation takes place. When a reader
leaves the readers crowd it is casy to prove that the writers crowd is stiil empty, which
allows the compiler to simply check the head of the quene for a reader, thus avoiding
any more complex evaluation. Whenever a writer joins the writers crowd all gunarantecs
are known to be false, and do not need to be checked at all. In short, we have shown

that intermediate steps of the verification program can lead to sufficient information to

10, A simitar objection is actually raised in [Hoare 74, p. 556
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perform optimizations that can significantly reduce overhead for checking guarantees.

We have advocated designing, verifying, and implementing serializers and

data abstractions independently. This independence can lead (especially in CLU) to

‘ many levels of procedure calls, where each procedure performs an extremely small part
of the computation. When the overhead for procedure calls costs on the same order as

the rest of the computation, it becomes desirable to substitute the bodics of procedures

for their invocations [Atkinson 76, Scheifler 77]. For serializers in the style we have

advocated, it is generally both simple and beneficial to perforny this substitution. We

note that the simplicity of the substitution is greatly aided by our initial requirement

that the scrializer present the same interface as the underlying resource.
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3. Semantic Model

In this chapter we present an abbreviated semantic model for concurrent
execution of programs, and use it to define serializer semantics. In the next chapter, we

use the model to define a small specification language for serializers.

The semantic model we use to define serializers is intended to be embedded
within a larger semantic |ﬁodel, just as the serializer construct is embedded in a larger
programming language. We will not be concerned initially with which larger model is
used, although we will return to the issue later. Whatever larger model is uscd, there

must be support for shared objects, side-effects, and concurrency.

We will first give an overview of the semantic model for serializers, assuming a
particular larger semantic model. Then we discuss the various components of .he
model in detail. Then we give the meaning of the serializer construct by giving
predicates that all serializers must satisfy. Finally, we discuss the role of induction in
the serializer model, and outline how the model might be embedded in a different

larger semantic model based on message-passing between processes.
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3.1 Overview of serializer semantics

Informally, the text of a serializer is a set of statements that describe what
happens when serializer operations are exccuted in a system with concurrent processes.

To give the semantics of the serializer construct, we require a definition of “serializer

operations”, a definition of "exccution”, a definition of "process”, and a definition of

"what happens”.

The model we choose can be viewed as an interpreter. Each procedure is
represented by a graph composed of basic instructions that indicate which actions to
perform and arcs between the instructions to indicate the order of execution. There is a
global state, consisting of a set of shared objects and a set of processes. Each process has
a local state, which includes a set of local objects, a stack of procedure activations, and a
program counter that indicates the instruction that the process is to execute next. Each
instruction represents some basic action. Excecuting an instruction modifies the global ;
or local state. The execution of an instruction always indicates the next instruction in ;
the process by modifying the program counter. A process where the next instruction is
permitted o occur is called active. Exccuting certain instructions may causce & process 1o

become inactive until certain conditions hold.

For simple serializers, the only components of the global state modelled are

the state of the gueues and crowds for the serializer object, and the state of serializer

possession,  The only component of the local state modelled is the program counter

I TC—

within a serializer operation,
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The interpreter proceeds by choosing an active process, and executing the |
: ‘ instruction indicated by the program counter of that process. Although the choice of
process is non-deterministic, no process that is active may be indefinitely denied

execution. We call the sequence of instructions executed by the interpreter a history.

We can give the semantics of this informal model through a predicate that
takes a history, an initial global memory state, an initial set of processes (and their local
states), and a sct of graphs representing the procedures in the system, and returns a
boolean indicating whether the history could be produced by the interpreter we have

described. We will call this predicate the global legality predicate.

In this thesis we are discussing a single language construct. In this context,

” presenting a complete definition for a language would occupy more space and attention
than it merits. The semantics of a language construct can be defined through a partial

? legality predicate that partially determines the global legality predicate. For the
serinlizer construct, this predicate is false for historics that are prohibited duc to

serializer semantics, and true for others. We will not present a definition of a larger

X fanguage, nor formally state the interactions between the serializer construct and the

o
P T

other binguage features.
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3.2 Nodes

In defining what is meant by “execution of serializer operations”, we first need
to define a representation for an operation and its associated data. Since we are dealing
with only one scrializer object at a time, it is convenient to regard the serializer
operations and the scrializer object as being inextricably bound together into a single
unit. For brevity in this chapter, we will use the term serializer object to refer to this

unit.

Fach serializer operation (bound to an associuted serializer object) is
composcd of nodes. A node is just (informally speaking) an instruction at some location
in a program with its associated data. A node graph is used to represent a serializer
opcration, where the arcs in the graph represent sequential execution. For simple
scrializers, the node graph is degenerate, since there is a lincar order to the nodes. We

have used the term graph 1o case the discussion of extensions to this model.

The following kinds of nodes are involved with synchronization in a simple

serializer. At such a node, possession of the serializer object may be gained or released.

enter (operation_name(formal_argumenis)). This node represents the
initial entry to an operation that requires possession of the serializer
object.  After this node is exccuted, the executing process has
possession.

exit: ‘This node represents the epilog to an opceration that requires
possession.  Exceuting this node releases possession,




enqueue (queue, guarantee): ‘This node represents the first part of an
enqueuce statement.  Exccuting this node places the process in the
specified queue with the specified guarantee and releases possession.

dequeue (queue, guarantee). This node represents the second part of the
enqueue statement.  Exccuting this node regains  possession and
removes the executing process from the queue.

join (crowd): This node represents the start of the join statement,
Executing this node places the process in the crowd and releases
possession.

leave (crowd): ‘This node represents the end of the join statement.
Exccuting this node regains possession through the external queue
and removes the process from the crowd.

The following kinds of nodes are used for other primitive actions that can

occur in a simple serializer.

invoke (invocation): This node represents the termination of exccution of
the specified invocation, For simple serializers it will only appear
once, and must appear in the body of a jein statement.

return (invocation). As with the invoke node, the return node represents
the termination of exccution of the specified invocation.  Exccuting
the return node also designates the object to be returned when the
serializer operation (erminates at the exit node.

The use of inveke and return nodes in simple serializers is limited o showing where the

operations of the underlying resource are called.




Each node N has the following structure:

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave,
invoke, return) indicating the kind of node.

* N.next - empty for exit nodes; otherwise the next node in the execution
scquence. Note that the next node for any return node is an leave node if
the return is performed while in a join statement, otherwisc the next node
is a leave node.

* N.mob - for enqueue and dequeue nodes, the queue used; for join and
leave nodes, the crowd used; otherwise empty.

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for
return and invoke nodes, the expression to evaluate; for an enter node,
the operation name and its formal arguments; otherwise empty. Note
that for an invoke or return node the information about which procedure
is executed and which arguments are used is contained in the expression.

* N.match - for an enqueue node, the corresponding dequeue node; for a
join node, the corresponding leave node; otherwise empty.

‘The transformation of a serializer operation to nodes will be given by example.

Suppose we have the following opceration in a serializer:

change = proc (x: cvt, d: data) returns (value)
enqueue x.q until crowd$empty(x.c)
join x.c

return (resource$change(x.r, d))

end
end change




‘The node graph for the above operation can be represented as:

N1:
N2:
N3:
N4 :
N5:
NG :
N7:

In the above graph, Nl.next = N2, N2.next = N3, and so on. N7.next is

empty. The Queues, crowds, and expressions are indicated.

enter (change(x, d))

enqueue {x.q, crowdSempty(x.c))
dequeue (x.q, crowdSempty(x.c))
join (x.c)

return (resource$Schange(x.r, d))
leave (x.c)

exit

N2mob = NImob = xgq
N4mob = N6mob = xc

! N2.expr = N3.expr = crowd$empiy(x.c)

The reader should be cautioned that the description we have given for nodes

and node graphs is incomplete. We have not discussed conditional statements,

assignment, exceptions, or iteration. In later chapters, we will describe how extended

node graphs would be handled.




3.3 Events

Informally, an event is the completion of execution of a node in a process. For

our purpaoses, the important features of an event are:

* An event is atomic. An event takes no time to occur, although the
amount of time between events is always positive and finite.

* An event is associated with a single node of a serializer.
* An cvent is associated with a single “process”. We assume that the reader

has some intuitive idea of process. We will introduce a more exact
definition of a speciatization of the process notion in the next section.

It has been proposed [Greif 75] that an event is a state transition. The state of

a simple seria’izer consists of the state of the seralizer queues (not including the
cuternal queue), the state of the serializer crowds, and the state of the scerializer
possession, Only the simple scrializer cvents (enter, exit, enqueue, dequeue, join, leave)
change the state of possession. Changes in possession that do not alter internal queues
or crowds result from enter and leave cvents. Changes o internal quenes result from
enquene and dequeue cvents. Changes to crowds result from join and leitve cvents. We
will retaren to this point i a kater chapter,
In a full semantic model we would have o show where an invocation started
and whoere it terminated.  For simplicity, we have chosen to not represent the event that
marks the start of an invocation, "The invoke and return events are sufficient o indicate

where the resource operations are called, which is aff that we need at this point in our
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discussion.

A dequeuce cvent marks a change in state of the indicated queue, and a change
in the possession of the scrializer. A dequeue event for some process will not occur until
after the corresponding enqueue event, and not until that process is at the head of its
queue and the guarantee evaluates to true. The evaluation of guarantees takes place
immediately prior to every event that releases possession (enqueue, join, and exit events
release possession). For any event E that releases posscssion, we will assume that
cvaluation of the guarantces takes place between E and the serializer event immediately
preceding E. For simple serializers, where the guarantees are limited to side-effect free
cvaluation of expressions involving the scrializer state, no further events need to be
introduced to represent the evaluation of guarantees. 1Ff more involved expressions are

allowed, events representing such evaluation mus* be introduced.

3.4 Transactions

For a serializer, a rransaction is a sequence of scrializer events that occur for
some process in the execution of a serializer operation for some serializer object. ‘The
order of events in a transaction is the same as the order in which those events occur in
the exccution of the serializer operation. Fach enter event for some serializer object is
the first event in some transaction, and cach exil cvent is the last event in some

transaction. We assign a unique wransaction identifier at the occurrence of an enfer

cvent.




A transaction may also be viewed as a segment of a process. There may be
many transactions involving a scrializer object for any particular process, but a
transaction can only belong o a single process. The intent of transactions is (o capture
only the amount of detail about a process necessary 10 define serializer semantics.

Where we formerly used the term process, we will now use the term transaction,

Now that we have identified events as being associated with transactions and
nodcs, it is notationally convenient to give events a structure. Each event E has several
components;

* E.trans - the transaction identifier for the event.
* E.node - the node associated with the event.

* E.kind - the same as E.node.kind.

We can associate possession of the serializer object with a transaction by

noting that if there have been more gaining than releasing events for some transaction
in some finite history (the difference can only be 0 or 1), then the transaction has
possession of the scrializer from the fast releasing event for that transaction up to the

last event in that history.




3.5 llistories

For a scrializer, a history is a scquence (possibly infinite) of cvents that
represents all events that occur for a particular serializer object. For a given serializer

object, there are infinitely many possible histories, depending on the requests sent to

E that scralizer object and on the arbitrary choices possible in sclecting dequcue events

when several queues are ready.

A
5&‘ A history can be viewed as being seme interleaving of the transactions

involving a scrializer object. Every event in a history also belongs to some transaction.

‘The reverse is not true, our modcel includes histories with incomplete transactions.

Scrializer semantics is defined by stating which histories can be produced for
any given scrializer object. We define a predicate that, given a representation of
serializer code and a serializer history, will be true if and only if the history could be
produced by the scrializer. A history that satisfies that predicate is called a legal history
for that serializer code. A more complete definition of a legal history occurs later in this

chapter.

Pt . . . . - - . .
I We assume that the following functions are delined on serializer histories:
2

3

; . »

b Finite(H)

! is true if the history is finite: otherwise false.

‘ Size (H)

5 returns the number of clements in HOf H s finite: otherwise s

; undelined.
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1 Index_set (H)
if H is infinite, returns the set of positive integers; otherwise returns

, the set of integers {N | 1 <= N <= Size(H)}.

i Nth (H, N)
i returns the Nth element of H if N € Index_sct(H); otherwise is
g undefined.

Head (H, N)
returns a prefix of H thatis the first N elements of H, provided that
- =N-€ Index_set(H); returns the empty sequence if N is 0; otherwise is
undefined.

For simplicity, we have chosen to model only those operations that accept a
serializer object as an argument. We assume that the serializer object is initially in some

initial state, such as that obtained by executing its create operation: the resource object

is in its initial state, no transaction has possession, and all queoes and crowds are empty.
] The model we have presented is only sufficient to represent operations where
possession of the serializer object is gained. For example, the Fl FO scrializer presented

in the previous chapter has three operations; the model we have presented is only

,- suflicient 1o represent two of them: read and write.
> |
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3.6 Definitions

Predicates will be defined in a dialect of first-order predicate calculus.
Functions arce defined using a similar syntax, but avoid the use of quantifiers. We call

this language the definition language, and will refer to it as such in later chapters.

Many of the following definitions are more casily expressed if we have a
notation for conditional expressions. The expression "if X then Y ¢lse Z" is taken to be
Y if X is true (even if Z s undelined), and Z if X is false (even if Y is undefined), and
undefined if X is undefined. We also use the "elseif” extension to this notation, as in
CL.U, to allow convenient syntax for multiple cases. In cases where the "else™ clause is
omitted, "else true” is assumed (which implies that only boolean conditional expression

may omit the “clse” clause).

Many of the functions and predicates given below are defined only for finite
histories. In our definitions, these functions and predicates are never applied o infinite

histories, so there is no need to define them for those cases.




Event E occurs in history Hif there is some integer index N such that E is the
Nth event of H. Eveat El precedes event E2 in history H if both E1 and E2 occur in H,

and the index where E1 occurs is less than the index where E2 occurs.

Occurs (E, H) =
3| € Index_sct(H): E = Nth(H, )

Precedes (E1, E2, H) =
' 31, J € Index_set(H):
1<J & El = Nith(H, I) & E2 = Nth(H, J)

' Note that we have assumed that an event can only occur once in a history. This is

= implicd by later definitions.

As a notational convenience, we introduce the predicate Samce_trans(H, 1, 1),

A which is true if the Ith and Jth events in history H are from the same transaction. The
predicate is undcefined if the integers [ or J do not belong to Index_set(H).
Same_trans (H, 1, 1) =
44 Nth(H, D.trans = Nth(H, J).trans
t
F
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We often need to express the idea that a particular event, or all events for a

given node, cannot occur between two given events.

Excludes (E1, E2, E, H) =
Precedes(E, E1, H) | Precedes(E2, E,H)JE = E1|E = E2

Excludes_node (E1, E2, N, H) =
v 1 € Index_set(H):
i Nth(H, l).node = N
then Excludes(E1L, E2, Nth(H, 1), H)

A slightly more complicated predicate will be needed to specify a more
general exclusion predicate  (lo be used in later chapters).
Node_excludes_node (N1, N2, N, H) is true iff no ¢event for a given node N can occur
between any two events El and E2, where El.node = NI, E2.node = N2, and

El.trans = E2.trans.

Node_excludes_node (N1, N2, N, H) =
v I.J € Index_se(H):
if ( Nth{H, D.node = NI
& Nth(H., N.node = N2
& Same_trans(H, 1, 1))
then Fxcludes_node(Nth(H, 1), Nth(H{, 1), N, H)

Intuitively, Node_excludes_node(N1, N2, N, H) expresses the restriction that no event
generated by node N oceurs between events generated by nodes N1 and N2, where the

cvents from N1and N2 belong to the same transaction,




0% AR

We are often interested in the fast event of a finite history, or in a history that
lacks only the last event of a given finite history. The functions Last and Front are used

for notational convenicnce.

) Last (H) = Nth(H, Size(H))
Front (H) = Head(H, Size(H) - 1)
Certain events gain exclusive possession of the serializer, while other events
rclease possession of the serializer. Still other events do not change possession.
Gains(E) is true only if the event E gains possession, while Relcases(E) is truc only if E
releases possession.
‘ Gains (k) =
E.kind = enter | Ekind = leave | Ekind = dequeue
E Releases (F) =
E.kind = exit | E.kind = join ] E.kind = enqueue
i

i
i
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A finite senializer history is busy if its last cvent gained possession of the
serializer, or if its last event did not release the serializer and the history before that

cvent was busy.

Busy (H) =
if Size(H) = 0 then false
elscif Releases(l.ast(H)) then false
else Gains(Last(H)) | Busy(Front(H))

The functions Qsize and Csize return the number of transactions using a

queuc or crowd given the queue or crowd and a finite history.

Qsize (Q, H) =
il Size(H) = 0 then 0
clseif Last(H).kind = enqueue & Last(H).mob = Q
then Qsize(From(H)) + 1
clseif Last(H).kind = dequeue & Last(H).mob = Q
then Qsize(Front(H)) - 1
clse Qsize(Froni(H))

Csize (C, H) =
i Size(H) = 0then 0
chseil Last(H).kind = join & Last(H).mob = C
then Csize(Fron(H)) + 1
clseil Last(H).kind = leave & Last(H).mob = C
then Csize(Froni(H)) - 1
clse Csize(Front(H))
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In certain serializer specifications, the rank of an event is important. The rank
of an event E is an integer that represents the order of E relative to other events
occurring at E.node. ‘The first event to occur at a node has rank 1, the second has rank

2, and so on. The rank of an event that docs not occur in a history is 0.

Rank (H,E) =
if Occurs(H, E)
then 1 + Rank_scan(H, E, 1)
else 0

In defining Rank, we made use of Rank_scan(H, E, 1), which returns the

number of events occurring in H at or after event Nth(H, 1) and before E with the same

node as E. *

Rank_scan (H,E, ) =
ifNth(H, ) = Ethen 0
clscif Nth(H, 1).node = E.node
then 1 + Rank_scan(H, E, 1+ 1)
clse Rank_scan(H, E, 1 +1)

- 060 -

v LI 2t alla iU + 4

ool 4 e Ve e .
e e g el 'J‘ nJna ol BN Py

[



3.6.1 LEvaluation of guarantees

Whenever a serializer is relcased, the guarantees of the non-empty queues are
cvaluated. The following functions define such evaluation given a finite history and an
expression to be evaluated. The notation {G} is used to represent the expression G
occurring in serializer code, and distinguishes the expression from our definition 1

notation, since the syntax for expressions and definitions is often similar,

Eval is dcfined by cascs, each case being based on the syntax for boolean
expressions.  For simple scrializers, Eval returns a boolean value, since guarantees are

limited to boolean expressions involving tests on the emptiness of queues and crowds.
Eval (H, {G1 & G2}) = Eval(H, {G1}) & Eval(H, {G2})

Eval (H, {G1|G2}) = Eval(H, {G1}) | Eval(H, {G2})

Eval (H, {~ G}) = ~Eval(H, {G})
Eval (H, {crowd$empty(C)}) = Csize(Var({C}H), H) = 0

Eval (H, {qucucsempty(Q)}) = Qsize(Var({Q}), H) = 0

Eval (H, {falsc}) = false
Eval (H, {truc}) = true
‘The Var function (in Var(§Q}) and Var({C})) is a mapping from syntactic

expressions for queues and crowds 1o some semantic representation for gueues and

crowds. We require that the mapping produced by Var is the same mapping that is
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X used to produce the N.mob component of any node N in the history H.

The above definition of Eval is tailored to the needs of defining the semantics )
of simple serializers. There is no provision for local variables, which would be
! transaction specific. There is no provision for guarantecs with side effects, exceptions,
or non-termination, which would require the use of events to mark the state transitions.

Further, such provisions would also complicate the definition of the Var function.

3.6.2 Legal histories

' A history s legal if it can be produced by some execution of a scrializer.
| Legal(H, S) takes a history and a sct of nodes that represent the code for a serializer,
and returns true if the history could have been produced from the serializer code. A
legal history must be composed of Iegal steps. That is, cach prefix of the history can
only be followed by an cvent that represents a permitted state transition of the

scrializer.

3 For a finite history H to be Iegally followed by the event E, the following rules
must be satishied: 3
'
&
' * For E to gain posscssion of the serializer, then there can be no transaction
3 z in possession of the serializer (~ Busy(H)).

|
{

* I there s a transaction in possession of the serializer, then E must belong
to that transaction.

~ 02 -
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*If E is a dequeuce event, its transaction must be at the head of its queue
and the guarantee must be true.

* I E is an enter or leave event, there may be no queues such that the front
transaction in the queue has a true guarantee,

* All events from a single transaction must occur in the order dictated by
legal execution of the code for the operation exccuted by that transaction,

In particular, an enter event must be the first event in its transaction,
f Note that there are no restrictions explicitly involving join and exit events. The only |
5 restrictions that we impose for these events are expressed by the requirement for "legal
J
3 execution” of the node graph.

The above conditions lcad to the following definitions of Legal and

Legal_step, where H is a history, and S is the set of enter nodes for the operations of the

serializer that require possession.

legal (H, S) =
v N € Index_set(H): Legal_step(Head(H, N-1), Nth(H, N), S)

Legal_step(H.E. S) =
( (if Gains(E) then ~Busy(H))
& (il Busy(H) then Last(H).trans = E.trans)
& (F.kind = dequeue D Legal_dequeuc(i!, E))
& (if E.kind = enter | E.kind = leave then None_rcady(i1))
& 1.cgal_tramsaction_step(H, E)
& (F.kind = enter D E.node € Nodes(S)) )
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The event Eis a legal dequeve event after the end of history H if the guarantee

is true, and the corresponding enqueue ¢event is is at the head of its queue in history H.

Legal_dequeue (H, E) =
( Eval(H, E.cxpr)
& 3| € Index_set(H):
( Nth(H, 1).node.next = E.node
& Nth(H, I).trans = E.trans
& chud_cnquéuc(H. )))

The transaction for the enqueue event Nth(H, 1) is at the head of its qucue if
Nth(H, 1) is the last cvent in H for the transaction, and every other enqueue event

occurring in H before Nth(H, 1) has a corresponding dequcue event.

Head_enqueue (H, 1) =
( In_queuc(H, 1)
& v J € Index_sct(H):
if J <1 then ~In_same_queue(H, 1,)))

In_qucuc(H, 1) is true only if Nth(H, I) is an enqueue cvent that is the last event in H

for its transaction.

In_queue (H, 1) =
( Nth(H, ).kind = enqueue
& v J € Index_set(H):
ifJ > 1 then ~Same_trans(H, 1, J))




In_same_queuc(H, 1, 1) is true iff Nth(H, 1) and Nth(H, J) ar¢ enqueue cvents that are
the last events in their transactions and the transactions are in the same queue,
In_same_queue (H, 1, J) =
( In_gucue(H, 1)

& In_gueue(H, J)
& Nth(H, I).node.mob = Nth(H, J).node.mob )

None_ready(H) 1s true if for a particular finite history there is no explicit
serializer queue such that the front transaction in the qucue has a guarantee that
evaluates to true. This predicate is used to define the priority of explicit queues over
the single external queue of a serializer.

None_ready (H) =
v | € Index_sct(H):

if Head_cnqueue(H, 1)
then ~Eval(H, Nth(H, 1).node.cxpr)

An event E can be a legal step after some history H only if it can be produced
by scquential execution of some transaction. ‘There must not be an event in H with the
same transaction and the same node as E; and if E is not an enter nodc, then there must

be an event in H from the same transaction as F that results from executing a node for

which E.node is the next node.
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Legal_transaction_step (H, F) =
(v 1€ Index_sct(H):
(if E.trans = Nth(H, D.trans

then E.node = Nth(H, [).node)

& if Ekind = enter
then 3 1€ Index_sct(H):
( E.trans = Nth(H, I).trans
& E.node = Nih(H, 1).node.next) )

3.6.3 Complete histories

The set of legal histories for a serializer includes histories where transactions
have been started but not completed. Any finite legal history where the serializer state
requires further events o occur is termed incomplete.  All other Iegal histories are
complete. A complete finite history is one where no further events are required to

occur. Events are required to occur according to the following rules:

The serializer  specification  kanguage  will be interpreted as  defining
specification predicates on complete histories.  Scrializer code is suid 10 mecet its
specifications if the specification predicates are true for every complete history of that

code.
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Fora complete history, all events that are required 1o occur in the history must

OCCHT,

* Whenever areleasing event occurs and there are ready queties, a dequeue
event from one ol those queues is required. Therefore, i H s finite, and
the fast event in H oreleased possession, then H is only complete if no
queues are ready.

* For every event that gains possession of the serializer, a corresponding

event that releases the serializer s required.  For simple serializers, every
f gaining cvent will be followed by a releasing event. Note that this
condition implies that if Hois finite and not empty, then Last(H) was a
releasing cvent,

* For every join event, a corresponding leave event is required. We assume
that every operation of the underlying resource used in a join statement
will terminate. Such an assumption is part of a modular proof of
termination for programs involving scrializers.

These conditions lead o the lollowing definition for Complete, where H is a history for
some serializer, and S is the set of enter nodes for operations of that serializer that

require possession.,

Complete (H,S) =
( l.egal(H, S)
& (if Finite(H) then None_rcady(H))
& Gain_complete(H)
& Join_complete(H))




Gain_complete(H) is true if for every gaining event there is a corresponding

releasing event that occurs after the gaining event,

Gain_complete (H) =
v 1 € Index_sct(H):
if Gains(Nth(H, 1))
then 3 J € Index_sct(H):

Corresponding_release(H, 1, 1)

Corresponding_release (H, 1, 1) is truc if Nth(H, J) is the releasing event that
corresponds to the gaining event at Nth(H, 1). A releasing event corresponds to a
gaining event if both cvents are in the same transaction, and there are no intervening

refeasing events for the same transaction.

Correspording_rclease (H, 1, J) = 1:

( Release_follows(H, 1, )
& v K € Index_sct(H):

il K <J then ~Release_follows(H, 1, K))

Release_follows (H, 1, 1) is true ifT Nth(H, 1) is a releasing event that follows

the event Nth(H, 1); and belongs o the sume transaction as Nth(H, ).

Release_follows (11, 1, 1) =

I <3 & Same_trans(h), 1, 1) & Releases(Nth(IH, 1))




= - sl A . Y i i i kil andia T —p— E N e WP e e

Joim_complete(t) is true if every join event has a corresponding leave event.
A leave event corresponds to a join event (T it belongs to the same transaction as the
joinevent and there are no intervening leave events for the same transaction.
Join_complete (H) =
v | € Index_set(H):
if Nth(H, 1).kind = join
then 3 € Index_sct(H):
( Leave_follows(H, 1, 1)
& v K € Index_set(H):

iFK<J
then ~Leave_follows(H, 1, K))

Leave_follows (H, 1, J) 1s true iff Nth(H, J) is a leave cvent that follows the
cvent Nth(H, 1), and belongs to the same transaction as Nth(H, 1).

Leave_follows (H, 1, )) =
[ <) & Same_trans(H, 1, 1) & Nth(H, I).kind = leave

3.7 Serializer Induction

In CLU, a cluster that implements a data type does so by providing operations
that manipulate objects of a representation type. For every abstract object, there is a
representation object. I designing and verifying clusters, it has been found to be
usclul to make use of a representation invariant [Guttag, Horowitz and Musser 78] that
must hold for all objects supported by the cluster. This representation invariant should

be true whenever a representation object s ereated, and it should be maintained by all
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operations.

To prove that the representation invariant holds, we need to use induction on
the sequence of operations performed. The induction principle we use is that if P is
true at the start of the abstract object's lifetime, and assuming P for an object at the start
of an operation implics that P is true at the end of the operation, then P is true of that

object before and after every operation. As in [Guttag, Horowitz and Musser 78], we

11

will call this data type induction.

o show the soundness of data type induction, we need to show that if P is
true of an object after any operation of the cluster, then P is true of the object before

any other operation of the cluster, provided that there were no intervening operations

of the cluster. Informally, to use data type induction using some predicate P, it should

not be possible for actions of other programs to make P invalid. Itis possible in CLU to
write clusters such that data type induction can be used to prove reasonable predicates
about their objects. A cluster with this property is said to have an isolated representation
[Atkinson 76]. While the cluster construct is not strictly necessary if one wishes to use

data type induction, it facilitates the determination of an isolated representation.

As presented in this thesis, the serializer construct is quite similar to the cluster
construct. Both can implement abstract types, and both do so by manipulating objects

of a representation Gype through operations that can have sole aceess o the

' L Also know as generator induction in [Weghreit and Spitzen 76].
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representation objects.  Since serializers provide the same kind of representation

protection as clusters do, we can use data type induction, in part, o verify serializers.

We cull the application of data type induction to historics serializer induction.

For any complcte history H, serializer induction can be expressed as:

if
( P(Head(H, 0))
& v L € Index_sct(H):
(if (Gains(H, 1)
& Corresponding_release(H, 1, 1)
& P(Head(H, 1-1))
then P(Head(H. 1))

then
v K € Index_set(H):
if Gains(Nth(H, K)) then P(Head(H, K-1))

The predicate P is intended o be defined on finite historics where no transaction is in

possession of the serializer at the end of the history.

History induction is applicable for any scrializer where the predicate PP owill

hold from the event where possession is released 1o the next event where possession is

gained. We can express this condition as:




———

'3
. v LJ € Index_set(H):
if ( Gains(Nth(H, 1))
& Releases(Nth(H, 1))
& Nth(H, J).node.next = Nth(H, I).node
& P(Hcead(H, J-1)))
'g then P(Head(H, 1))
We call this the isolation condition. Just as the cluster construct facilitates but does not
fully enforce an isolated representation, the scrializer construct does not necessarily
enforee the isolation condition.
The serializers we will be specifying and proving satisfy the isolation
; condition. In view of this, there is no provision in the histories for events that occur
external to serializers. We have not provided for situations that we have been unable to
‘ prohibit in the programming language, but belicve to be bad practice.

An example of serializer induction is the use of a representation invariant for
the FIFO readers-writers problem presented in the previous chapter. A simple
invariant for an object X of type rep for any finite history H is:

i Csize(X.re, H) = 0] Csize(X.we, H) = 0
While this invartant is not the strongest we can prove, it is a uscful property that can be
B proven simply.
]
l
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As a reminder, the code for the read operation is (briefly):

P enqueue x.q until crowdSempty(x.wc)
;:( join x.rc; ... end

while the code for the write operation is:

enqueue x.q until crowdSempty(x.wc) & crowd$Sempty(x.rc)
join x.wc; ... end

3 Informally, we can prove the invariant by cases. First, suppose that we have

C1 = Csize(H, X.re) > 0 D Csize(H, X.wc) = 0,
C2 = GCsize(H, X.wc) > 0 D Csize(H, X.rc) = 0,

where the history prefix is understood. Since Csize always results in a non-negative
integer, the condition C1 & C2 implies the invariant. Initially, both crowds are empty,
so the invariant is trivially truc. To prove Cl, we assume that Cl is true immediately
f prior to some gaining event, and show that it is maintained immediately after 2ny
releasing event. An examination of the code shows that the only sequence of events

k- that can increase Csize(X.wc) is where some writer dequeues and joins the writer crowd.
Therefore, the only way that C1 could be false is to allow some writer to dequeue when

Csize(X.rc) > 0. However, the guarantee for the writer transaction prohibits the event

from occurring until Csize(X.rc) = 0. Therefore, C1 is maintained. Condition C2 is

proved similarly. “Therelore the invariant is maintained.
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3.8 Comments on enter and leave events

One simplification made in the model is based on the use of enter and leave
events. A reasonable requirement on enter events is that they will occur if they have
been requested. ‘The only requirement that we have on leave cvents is that they will
eventually occur if the corresponding join has occurred. Yet after completing the
resource operation, the leave event must be requested, since some other transaction may
be in possession. The simplification we have made is not to represent requests for enter

or leave cvents as separate cvents.

One requirement that this places on scrializers is that code executed while a
transaction has possession of the serializer must terminate, since otherwise a request for
possession could not be satislied. Termination while in possession is trivially satisfied

for simple scrializers,

We have also assumed that there is some scheduling discipline on requests for
possession of the serializer so that a request for an enter or leave cvent will not be
forever defayed by other such requests. A FIFO discipline on all such requests may be
overly strict in some systems, and we do not require it. Any discipline that guarantees
service Lo requests for possession will be satisfactory. We make no attempt to prove this

requirement in general,

Adding specific events to the model to indicate when enter and leave cvents ;

3
] have been requested is only necessary  to - represent undesirable cases such s

non-termination while in possession, or a pathological scheduler. Further, it is not

-74 -




reasonable to include such events in the specifications or proof techniques, since their

order of occurrence is not affected by possession of the serializer object.

3.9 Message passing semantics

The model we have presented in this chapter has been deliberately
incomplete. The larger semantic model we have assumed uses procedure calls and
processes, and is well-suited for describing the use of serializers in a system where
multiple processes communicate through shared memory. While having a certain
intuitive appeal, particularly to those familiar with monitors, the techniques we have
used (and will use) are applicable when a larger programming language and larger

semantic model are used.

In this section we will sketch a model based on message passing. Such a model

has been proposed by various people [Greifand Hewitt 75, Hewitt and Baker 77,

Good, Cohen and Keeton-Williams 79]. A similar model is used to describe distributed
systems [Svobodova, Liskov and Clark 79, Liskov 79). We believe that the structure of
serializers is quite usceful in organizing programs in these distributed systems, and will
address some further implications of scrializers in such an environment in our

conclusions.

In the message-passing model, separate entitics communicate by passing

mussages rather than by sharing memory among many processes. Of course, when the

same physical entity receives messages from various sources, the effect of a shared

memory is achicved. We can think of i serializer object as one such entity, the resource
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object as another entity, and the originators of messages to the serializer as other
entitics. In such a model, serializer objects are message switchers: They affect when a

message gets passed to a resource, but not the message itself, nor its reply.

We imagine that serializers are used in a programming language that supports
a logical network, where there are logical sites, cach of which has its own local objects.
Each site can communicate with another site only by sending messages to that other
site. We assume that cach site can send messages to any other site without regard to
physical connections. Unlike physical sites in a network, logical sites can be freely

created at relatively low cost, up to the limitations of the implementation.

In such a logical network, each serializer object is a scparate site. Further,
sach resource object is a separate site. Instead of saying that a process is executing
serializer code, however, we say that a site executes code for some transaction. Local
ariables are associated with the transaction, and representation components are

associated with the site.

The following description of the serializer construct in a message passing
model gives an outline of an abstract implementation for serializers. At serializer object
creation, the representation object is initialized, and the serializer site waits for external
messages to arrive. We describe the serializer events as follows:

*enter - An enter event represents the acceptance of an initial request
message for service at the serializer site. At this acceptance, a unigue
transaction identifier is generated 1o name the transaction that this event

starts. ‘The request message identifies the operation o exceute, the
arguments o that operation, and the destination for the reply. A
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destination is a site name and a transaction identifier relative to that site,

* enqueue - ‘The enqueue cvent represents the completion of a series of
actions.  First, the transaction identifier, the guarantee, and the
continuation point are placed in the named queue. Then the guarantees
at the head of the internal queues are evaluated to determine the next
transaction to scrvice. [f there are ready queues, the scerializer site sclects
one of them as the next to process and releases possession, [f there are no
ready queucs, the serializer site releases possession and accepts the next
external message. '

* dequeue - After the dequeue event, posscssion has been regained by the
transaction, the enqueued information has been removed from the queue,
and the serializer site will continue (o execute code for that transaction at
the given continuation point,

* join - The join cvent also represents completion of a series of actions.
- First, the transaction identificr and the continuation point are placed in
the named crowd. Then a message is sent to the resource site, 12
requesting the operation and arguments desired. "The message sent to the
3 resource site indicates the serializer site as the destination, and also names
the transaction being processed. Finally, as for the enqueue event, the
guarantees are examined and possession is released.

* leave - A leave cvent represents an acceptance of a reply message from
the resource site. Possession is regained by the transaction named in the
reply. The information associated with that transaction in the named
crowd is removed from that crowd. The serializer site continues 0
execute code for the transaction at the continuation point.

*enit - An exit event represents the completion of a series of actions. Fist,
a reply message is sent 1o the destination given in the enter event. For
simple serializers, the information in this reply is taken from the reply
received at the leave cevent. ‘Then the guarantees are evaluated and

12 Forsumplicity. we will assame that the only code that can appear in the body of a Jo statement will
be an invocation of i resouree operation,




possession released, as for the enqueue and join events,

The above discussion has presented a very simple view of serializers in a
distributed system. However, we belicve that extensions to this model will not greatly
affect our description of serializer events, For example, we have assumed that there is
no more than one request outstanding at a time, so that the site name and transaction

identifier are sufficient to specify a destination. A natural extension would be to allow

several requests to be outstanding. In such a case, a request number relative to the

transaction can be included in the destination.

B e i

3.10 Infinite histories revisited

We noted in our introduction that states can be regarded as cequivalence
classes of histories, a view advocated in [Greif 75] (although Greif discusses partial
orders of events rather than scquences of events). However, this approach doces not
casily deal with infinite histories, since the state predicates (such as Csize and Qsize) are
not defined on infinite histories. 1t would be convenient if we could avoid introducing
infinite histories, but we have not yet discovered a method that does not require them.,
We introduced infinite histories to model what happens (o a serializer object over its

entire lifetime. Some serializer objects are intended to have unbounded lifetimes, even

though any physically realizable system must have a linite lifetime,
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If we reject the use of infinite histories, then we consider the specification
clauses to be requirements that all finite complete histories must satisfy. Unfortunately,
this leads to difficultics with showing that the “starving” readers-writers solution could
not satisfy the guaranteed service specifications, since the counterexamples involve
infinite histories where certain events are not required to occur. I the only histories
considered to be complete are finite histories where after the last event all crowds are
empty and no queues are ready, then the starving readers-writers solution can be
proven to guarantee service. The system designer who relied on this proof would be

unplcasantly surprised to discover that starvation actually occurred under heavy loads.
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4. Specification language

Onc method of specifying a programming language is o provide rules for
translating programs written in that language into functions on some mathematical
domain. 'This method can also be applied to specification languages. The specification
language for scrializers is composed of clauses in which certain relations between
serializer cvents imply other relations between senializer events. The meaning of
specification clauses is given by stating rules for transforming the clauses into

specification predicates on historics.

Serializer code is said to meet its specifications if every complete history that
can be legally gencrated by the scerializer code (according to the partial legality predicate
discussed in the previous chapter) satishies all of the specification predicates that result

from the specification clauses for that scrializer code.

It is not our intention to require that the specification anguage have suflicient
power to define abstract data types. We are only concerned with specifying
concurrency control. We believe that the difficulty of arriving at good specification
methods dictates ‘hat we attack a tractable problem, and integrate the various

approaches as they are sufficiently well understood.

In this chapter we discuss the Kinds of serializer specifications supported, and
present the syntax and semantics of the specification language. Then we give a full
specification for the FIFO readers-writers serializer, some specifications for variations

on the readers-writers problem, and o partial specification for the bounded butler
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problem,

] 4.1 Kinds of serializer specifications

The specification language is a notation for requiring a serializer abstraction to

‘ have certain properties. These propertics are classificd as:

* Exclusion - where onc¢ kind of access excludes another, such as readers
3 excluding writers in a simple data base. This kind of specification is
necessary to prevent concurrent requests from interfering with each
other.

* Priority - where one transaction is served preferentially over another.
This may occur because of the order of enter cvents, the kind of
transaction, or other rcasons or combinations of reasons.

* Concurrency - where some accesses are required to be served
concurrently. The presence of concurrent processing for requests ofien
affects the performance of system, and may even affect the correctness.

* Service - where some (or all) accesses are required to run to completion
(analogous to requiring termination for scquential programs).

¥,

We nike no claim that all interesting synchronization properties fall into the above
citegorics, although many do. We also make no clain that all properties in the above
classes can be expressed in the specification language, or that the specifications are
especially concise in our language. ‘The classes we have chosen are not necessarily
L distinct; some properties may be considered to be in more than one class. We are more

interested in making the specification language usable by both programmers and

verification systems than attaining some kind of formal completencess.
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The specification language has nothing to say about performance, cither for
real time, computation time or storage. Although performance characteristics can be
inferred from some of our specifications, specifications and proofs of performance are

beyond the scope of this thesis.

The simple form of the specification language does not deal with the values
passed to or {rom serializer operations. This simplification has been made to avoid
discussing what the exact meaning of "value” is in the language. The form of the
specification fanguage in this chapter has events, nodes, boolean and integer values. We
also include limited predicates on these values, and simple arithmetic expressions as
functions on intcgers. It is possible to extend the specification language that the user
sees o include further values and functions, but such extensions involve more of the
semantics of the complete programming language than we wish 10 handle in this thesis.
in the next chapter, certain extensions are made to the specification language to support
our verification technigues, but these extensions are still quite limited, and do not

support user-defined values and functions.
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4.2 Specification language

The specification  language is defined by specifying a mapping  from
[ specification clauses 10 unbound specification predicates. Each unbound specification
predicate takes a symbol map and a history into a boolean that indicates whether the

specification clause is satisfied for that symbol map and that history.

A symbol map is a function from event symbols to cvents, and from node
symbols to nodes. It provides an interpretation in our semantic model of the symbols in
the specification clause. A valid symbol map provides a consistent interpretation of
symbols for a given history, and will be discussed further later in this chapter. The
symbol map is an important distinction between the specification language and the

definition language.

Each specilication clause defines a specification predicate, which maps
historics to boolean values: true if the clause is satisfied for that history, and false if it is
not. The specification predicate for a clause is the value of the unbound specification

-3 predicate for that clause taken over every valid symbol map for a given history.,
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4.2.1 Syntax of specification language

The specification language has a simple syntax. The specifications for
serializer code are expressed as a set of clauses, each clause being expressed as an
implication. The syntax of the spcecification language is given informally below, issues

of parenthesization and precedence being neglected.

Clause = Clause "D" Clause

| Ordering_clause

| Clause "&" Clause

| Cltause "}" Clause

| "~" Clause
| "GX" "(" Event_symbol "," Event_symbol "," Node_symbol ")"
| "GX" "(" Event_symbol "," Event_symbol "," Event_symbol ")"
| "@" Event_symbol
| Expr Order_Op Expr

Ordering_clause = Event symbol "<" Evont_symbol
| Event_symbol "<" Ordering clause

order_op = "<n I n>" I "Su I nZn I ":n I n#u
Expr = literal
| Expr "-" Expr
| Expr "+" Expr
| Expr “*" L[xpr
| Expr "/" Expr
| "#" Event symbol
An cvent symbol (Event symbol above) is writt n by writing a transaction
symbol followed by the event kind followed by optional information indicating other
components of the event (with optional digits  for further  disambiguation). A
transaction symbol is written by giving the first letter of the operation name (or enough

letters to be unambiguous) followed by optional digits if more than one transaction for

-84 -




atd . otanlane avs o

that operation is needed in the clause. Examples of event symbols for an operation

whose name starts with "X’ are;

* X-enter:  This symbol denotes an enter event for transaction X. By
convention, if there is only onc transaction appearing in a specification
clause for the opceration, no digits are necessary in the transaction symbol.
There can be only one enter event for any transaction,

* X-join: This symbol denotes a join event for transaction X. For simple
serializers, this join event is associated with performing the corresponding
opcration on the resource, Also, for simple serializers, we are limited to
having one join event for any given transaction.

* X1-exit: This symbol denotes an exit ¢vent for transaction X1. Note the
usc of the digit 1" to indicate a transaction that is distinct from X (or X2).
By convention, we give different transactions different digits in
specification clauses where more than one transaction for an operation is
mentioned.

* X2-enqueuce(s.q): This symbol denotes a enqueue cvent for transaction
X2, where the queue denoted by s.q is used.

A node symbol (Node_symbol above) is written by giving the first letter(s) of
the transaction name, followed by a "*"”, {ollowed by the event kind. For example, the
enter node for operation X is written as X*-enter. Any further information given is the

samg as the corresponding cvent,




4.2.2 Semantics of specification language

We first must describe the domains over which the specification language is
defined.”? The syntax given above mentions event and node symbols, but does not
explicitly demand that the symbols apply to a single serializer. Therefore, we need to
limit oursclves to nodes and cvents chosen from some particular serializer, S. We name
these domains (and rcprcscnlali‘vc elements) by:

~ A

n € N¢ -- node symbols for S

T

~

e € Eq -- eventsymbols for S
¢ € Cg - specification clauses for S

x € Xg - expressions for S

Note that we have provided single character names for sample elements of the domains.

We will follov. the leading character convention used in naming events for naming
clements of these domains in the later equations, including using trailing digits where

more than one element is desired.

The semantic domains are those domains described in the previous chapter on

the semantic model.

neE NS -- nodes for §

cE F.g --¢vents for S

13. Although the denotational method used in this thesis o define the specification language owes much
to work by Scott and Strachey [Scottand Strachey 71, Strachey and Wadsworth 74). the domains we use

are simply sets, not Lattices,
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heHg - complete histories for §

(Hg: Int-> Eg)

In specifying the meaning of the specification language it is necessary to
provide a symbol map that takes node and event symbols into their meanings. We will

discuss this function at greater length below.

pE€ PS: maps symbols to events or nodes

The following functions take syntactic values into semantic values. We say
that they define the meaning of the syntactic constructs in the specification language.

, We have avoided parsing and precedence issues to more clearly present these functions.

Note that the braces "{ }" arc used to bracket syntactic constructs and distinguish them

from the scmantic expressions.

~

E({c}.p) - cvent corresponding to ¢ in map p

Wy

~

N({n}.p) - node corresponding to nin map p

N: (Ng. Pg) -> Ng

»
LR e

C({c}.p.h) -- validity of specification clause ¢ in map p, history h

e s ¢t ilan

- (true if ¢ is satisfied, false il not)
2 C: (Cg, Pg. Hg) -> Bool

X({x}.p.h) -- valuc of expression x in map p, history h

I
| (an integer value)
t
|




X: (Xs. Ps. Hs) -> Int
O({op}.p) -- binary predicate corresponding to op
(Op=1{<.>.£.2,=,#})

O: Op-> ((Int, Int) -> Bool )

The definition of C({C}.p.h) for specification clause C is given below by cases.
C({cl D c2}.p,h) = C({cl},p.,h) D C({c2}.p,h)
Precedes(E({cel}.p), E(fe2}.p), h) |

C({cl<e2},p,h)

C({cl & c2},p.h) = C({cl},p.,h) & C({c2}.p.h) :
C({cl | c2}ph) = C({cl}.p.h) | C(tc2}.ph)
C({~c}.p.h) = ~C({c}.p.h)

~ A~ o~

CUHGX(el, €2, m}hph) = Excludes_node(E(fel ). E(e2}.p). N(fnb.p). h) 1

I

CUGX(cl, €2, e)}.ph) = ExcludestE({el }p). E(te2}.p). Efel.p). h)
Cl@elph) = Occurs(E(fel}.p), h)

C({x1 0px2},p,h) = O({op}.pXC({x1}.p.h), C({x2}.p,h))

N
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The definition of X({x}.p.h) is given below by cases:
X(x1 + x2}.p.h) = X({x1}.p.h) + X({x2}.p.h) ;
X(x1-x2bph) = X({x1}.p.h)- X({x2}.p.h) f
X(x1*x2bph) = X({x1Lph)* X({x2h.ph)
|
X({x1/x2}.p.h) = X({x1}.p.h) 7/ X(§x2},p.h) !
X({literalt,ph) = constant 1
X({#c}.p,h) = Rank(h, E({e}.p))
As a notational convenience, the clause "El < E2<E3" is equivalent to
3 "E1 <E2 & E2 < E3". Longer clauses of the same form are defined similarly.
: Some examples of specification clauses follow:
= X 1-join < X2-join D X1-leave < X2-join

3 This clause mentions two transactions, X1 and X2. The intention is
to specify that having transaction X1 access the resource prohibits X2
-' from accessing the resource.

@X-enter D @X-exit
This clause is a specification of service for transaction X, ‘The
occurrence of the X-enter event implies that the X-¢xit event occurs
in any complcte history.

@G-center & (#G-enter < #P-enter) D @G-exit

: 1 If the enter event for transaction G oceurs, and the rank of G-enter is

not greater than the rank of the enter event for transaction P, then
the exit event for transaction G must occur,  In (slightly) more

F intuitive terms, a transaction for operation G is only required to

4 { receive service i there are at least as many transactions for operation
|
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P as transactions for opcration G.

4.3 The symbol map

Mapping symbols in the specification clauses to mathematical entities is a
necessary part of translating specification clauses into functions on historics. It is
necessary to map event symbols into events, node symbols into nodes, and syntactic

expressions into their value domains.

The meaning of a specification clause is taken to be a predicate that, given a
history, returns true if a history satislies the specification, and false if it does not.
Serializer code is said to satisfy a specification clause if, for every complete history and
every valid symbol map for that history, the specification predicate defined by that

clause is true for the history.
A valid symbol map for serializer S must satisfy the following restrictions:

* Distinct cvent symbols must map to distinct events, and distinet node
symbols must map to distinct nodcs.

* Event symbols must be consistent with node symbols. For example, the
event symbol "R-enter™ must map o an event that is consistent with the
node symbol "R*-enter”,

* Event and node symbols map 1o events and nodes that are consistent in
kind 1o the symbol kinds. For example, the node symbol "R*-enter”
must map to a node that is an enter node in the serializer S.




* Event and node symbols map 1o events and nodes that are consistent in
transactions to the transaction symbols, For example, the event symbols
"Rl-enter” and "R1-exit" must map to events with the same transaction.

* Event symbols mentioned in ordering clauses (E1< E2) and GX clauses
(GX(FE1, E2, E)) must map to events that actually occur in the history.
Event symbols mentioned in rank expressions (#E) and occurrence
clauses (CE) need not occur in the history.

The last restriction on symbol maps nceeds further explanation. The
motivation for introducing it is to keep specifications of order sceparate from
specifications of service. For example, suppose that we are attlempting (o specify a
readers-writers serializer where writers are given priority over other writers solely on the

basis of when enter events occurred. To do this, we use the following specification:

Wl-enter < W2-enter D Wl-exit < W2-exit ¢

However, if the last restriction does not hold, and we therefore allow symbol maps

where the events corresponding to Wl-enter and W2-enter occur in the given order for
some history, but cither of the events corresponding 1o Wi-exit or W2-exit have not
occurred, then the specification clause will have a much different meaning. I the event
oceurrence is optional for the symbol map, then a serializer will satisfy the clavse if the
given order holds, and the serializer guarantees service to writers, but noc il writers can
starve.  In this rather surprising way, a priority specification has implied a service

specification.
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We believe that keeping the specification of order separate from  the
specification of service simplifies both specifications and proofs. Therefore, we have
required that a symbol map is valid for some history only if an event symbol in an

ordering or GX clause maps to an event that actually occurs in the history.

4.4 Readers-writers specifications

Our first examples deal with the readers-writers problem. In this problem, a
serializer abstraction should allow concurrent access to a simple data base for
transactions that simply read from the data base, but should not allow transactions that

write 1o the data base to overfap, since that could destroy the integrity of the data.

The same exclusion specifications apply to all versions of the readcrs-writers

problem.

-

* Readers exclude Writers - A reader accessing the resource prevents ¢
writer from accessing the resource.,

R-join < W-join D R-lcave < W-join

* Writers exclude Readers - A writer accessing the resouree prevents a
reader from accessing the resource,

W-join < R-join D W-lcave < R-join

* Writers exclude Writers - A writer accessing the resource prevents
another writer from accessing the resource.

Wi-join < W2-join D Wl-lcave < W2-join
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For the FIFO readers-writers sertalizer shown in Chapter 2, the priority given
to a transaction is based on when it arrived with respect to other transactions. We
cxpect strict FIFO ordering between readers and writers, and between writers and
writers. Strict priority between readers is not required, because readers may access the

resource concurrently. ‘Therefore, we have the following priority specifications:

* Readers not pre-empted by writers,
R-center < W-enter D R-join < W-join

* Writers not pre-empted by readers.

W-enter < R-enter D W-join < R-join
* Writers not pre-empted by other writers.,

Wl-enter < W2-enter D Wl-join < W2-joii

The above priority specifications only require the order of requests 1o be preserved
from enter cvents Lo join cvents, not from leave events 1o exit cvents. I the order of
service matters after the resource operation is performed, then we would include the
following clauscs:

R-enter < W-enter D R-exit < W-exit

W-enter < R-enter O W-exit < R-exit

Wl-enter < W2-enter D Wl-exit < W2-exit
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In the readers-writers case, we specify concurrency for readers by the
following specification:
GX(R-enter, R2-enter, W*-enter) & R2-enter < R1-leave
D R2-join < R1-leave
This clause is interpreted as requiring that for any two readers, R1 and R2, that enter
the resource without a writer entering the resource between R1 and R2, if R2 enters

before R1 has completed accessing the resource, then R2 will begin to access the

resource before R1 completes its access

We cannot require that two readers are actually concurrently executing
resource operations, since actual concurrency may depend on the scheduling policy

followed on a multi-processed machine, or on the relative speeds of two processors if

the requests are executed by separate machines, or on further concurrency limitations

imposed by the resource. The kind of specification that we must settle for is (0 require
that both requests are sent to the resource (in join events) before cither reply from the
resource is acknowledged (in leave events). A concurrency specification only requires

the opportunity for concurrent execution, unhindered by the serializer.

The spectfications of service for readers and writers are simply that for every

. enter cvent there should be a corresponding exit event, and that this should hold for

f" both readers and writers. The specification clauses are:

@R-center D @R-exit
@W-center D @W-exit
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4.5 Variations of the readers-writers problem

Other versions of the readers-writers problem  exist [Courtois, Heymans
and Parnas 71, Greif 75). Aside from differences based on the programming language
used, the versions differ mostly because of the kinds of priority they give to readers or

writers and the presence or absence of starvation.

The simplest priority specifications often conflict with other specifications.
For example, supposc that the person specifying the serializer wants to give writers
priority. The intention might be: "whenever a writer enters a serializer before a reader
has been serviced, the writer should be serviced before the reader.” This specification

can be written as;

W-enter € R-join D W-join < R-join
Further, we can write scrializer code that will realize this specification. Unfortunately,
if writers arrive at the serializer at a sullficiently high rate with respect to the fength of
time the resource$write takes, readers can be indefinitely prohibited from joining the
resource. This would conflict with the guaranteed service requirement given above,

since there can be no specification that prohibits writers from arriving at the resource,

- A more reasonable specification of writer's priority is to require il a reader

- and a writer enter the serializer while a particular other writer is being serviced, then the

writer will be serviced belore the reader.” This specification can be written as:
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(W 1-join < W2-enter < Wl-leave & Wl-join < R-enter < Wl-leave)
D W 1o < R-join

This speaiti-ation does not conflict with our service specifications. Regardless of the
number of writers that enter while resource$write is being performed for W1, the
readers at entered in that period need not be delayed for any writers arriving after

that period.

The guaranteed concurrency specifications may also differ from scrializer to
serializer. We may wish to require for the readers-priority serializer that all readers that
enter while a writer is accessing the resource will be allowed 1o concurrently access the
resource. This specification can be written as:

(W-join < R1-enter < W-lcave & W-join < R2-enter < W-leave)

D (R2-join < R1-leave & R1-join < R2-lcave}
This clause requires that for every pair of readers, R1 and R2, entering the serializer
while a writer is accessing the resource, that both readers begin o acceess the resource

before cither reply is acknowledged.
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4.6 Bounded Buffer Specifications

The bounded buffer pmblcm14 is based on opcerating system 170 buffering,
We assume that there is a producer of information, and a consumer of information.
The producer issues put requests to the systen to pass the information to the consumer,
and the consumer issucs ger requests to obtain the items of information from the
system. In order to allow both producer and consumer to operate in parallel, the system
provides a bounded buffer of length N to store items of information that the producer
has delivered to the system before the consumer has requested them. The producer can

proceed as long as it is no more than N items ahead of the consumer.

We have somewhat gencralized the problem by allowing multiple consumer
and producer processes for cach bounded buffer. If the producer consists of several
processes, then each process can proceed until it performs a pur request where the
request is made on a full buffer. Similarly, cach consumer process can proceed until it

performs a ger request on an empty buffer.

We assume that the resource acts as a bounded sequence of information
. 5 : . .
items,!® where the sequence cannot be more than Noitems tong. The pur operation
appends an item to the head of the sequence, while ger operation removes an item from

the tail of the sequence.

14 A monitor approach to tus problem appears e [Howard 76]0 Serializer code for this problem
appears i the appendix to this thesis, and is discassed i our conclusions,

15. Although this kind of sequence s also known as g quete, we avoid the use of the tenm o distinguish
between the gueues used by the seviabizer code for scheduling, and the gueue ised tor the data.
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The following specifications are conditional service specifications for the

bounded buflfer problem,

((#G-enter + N > #P-enter) & @P-enter) D @P-exit

((#P-enter > #G-enter) & @G-enter) D @G-exit

The G-enter event is the initial event of some ger transaction, and the P-enter event is
the initial event of some pus transaction. We require that the P transaction complete if
there have been enough G transactions to use the data, or if there is sufficient room in
the buffer to store the data. If the G-enter event is the i-th cvent using the G*-enter
node, and the P-enter event is the j-th event using the P*-enter node, then P must
complete if j < i+ N. Similarly, we require that a G transaction complete if there have
been enough P transactions started to supply the data. Therefore, G will complete if

i<j.

Note that the above specifications need o use @G-enter and @P-enter
because we only automatically require events appearing in ordering specifications to
occur in the historics. This choice was made based on the convenicnce of writing

certain examples. To illustrate, if the use of #G-enter required @G-enter, then the

specilication of service for P transactions above would have been written as two clauses:
(~@G-enter & (#P-enter € N)) D @P-exit !
1
\

(#G-enter + N> #P-center) D @P-exit
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Another specification of the bounded buffer problem is that the order of ger
requests and put requests cannot be interchanged, cither in forwarding the request to
the resource, or in returning the result. These specifications are similar to the FIFO

rcaders-writers priority specifications.
Gl-enter < G2-enter D (G1-join < G2-join & Gl-exit < G2-exit)

Pl-enter < P2-enter D (P1-join < P2-join & P1-exit < P2-exit)

We have chosen the exclusion specifications to be quite simple: accessing the
resource is exclusive. The exclusion specifications are expressed by the following four

- clauses.

G1-join < G2-join D Gl-leave < G2-join

G-join < P-join D G-leave € P-join

P1-join < P2-join D Pl-lcave < P2-join

P-join < G-join D P-leave < G-join

We have said that the serializer operations should, as far as practical, have the

siame effect as the resource operations.  In the bounded buffer problem, the serializer
operations have the same cffect as the cluster operations provided that the cluster
opcerations return normally. In executing a put operation for the serializer, if there is no
room in the bounded bufler for the item, the operation pauses until there is room. In

executing a ger operation, the operation will not proceed until an item is available. For

the operations of the resource, however, an exception is signalled if there is no room in
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the buffer when excewting a put operation, or if no item is present when exccuting a gef

operation, The signals of the resource operations have become the non-terminations of

the serializer operations. This raises the question of how well we have scparated

concurrency control from data access. We will discuss this question in the conclusions.
We have prescated the bounded buffer problem as an illustration of the

specification language and as an example of a serializer that is slightly beyond simple

arn to this cxample to illustrate how we can perform cxtensions

serializers. We will ret

in the program proving domain as well.
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5. Verification Rules
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In previous chapters we have used a definition language based on first-order
3 predicate calculus to give the meaning of both the serializer construct and the serializer
] specification language. In theory, we need nothing else to verify that a scrializer mects

its specifications. In practice, a certain amount of intermediate work is necessary.

¥ We have choscn 'to build a verifier that operates in a restricted domain. The
verificr applies rules that are specific to this domain to data it has describing a serializer
and specifications for that serializer. This chapter states and proves those rules. Our
choice of rules is based on their utility in verifying a number of variations of the

readers-writers problem (these examples are presented in the next chapter). No claims

——n i e e e < a.

= will be made for their completeness. Other classes of problems would most likely lead
to different sets of rules, although we would expect most such rule sets to have

substantial intersections with the set we have chosen.

In this chapter, we first argue that proofs can be reasonably performed in an
extended specification language. We then state and prove a number of verilication

rules expressed in the extended specification language. ‘These rules are used in a

program that performs automatic verification of serializers, to be discussed in the next

§i chapter. A method for proving service specifications is then presented that is partially
based on these rules, and its correctness argued. To illustrate the use of the verification

: rules, an example of a rule-based proof is given, Finally, certain weaknesses of our
methods are examined.

: f
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S.1 Proving in the specification language

In proving that a serializer meets its specifications we start with the text for a
serializer and a number of specification clauses. In proving that serializer code meets its
specifications we need to state intermediate propositions about the serializer code and
the specifications. To do so we need a language to state the propositions and rules of

inference that can be used for the language.

One candidate for such a language is the dialect of predicate calculus that we
used to define serializer semantics. If we used this definition language as the proof
language of the verification program, then we would be faced with the following tasks:

translating specifications into their meanings, reasoning in the definition language

about propositions expressed in the definition language, and translating the results into
some humanly readable form. The translation from specification language into
definition language is relatively easy: we have already described it in the previous
chapter. The translation from definition language into specification language is more

difficult,

We considered it 1o be preferable to carry out our reasoning, as far as
practical, in the specification kinguage. 1t is the language that the user is most likely to

understand.  Further, we find that most of the inference rules are casier to state and

manipulate in the specification language than in the definition language.




The verification program can be simply viewed as a data base about the
serializer code, a set of algorithms that are used to examine and modify the data base,
and a set of specification clauscs to prove about the serializer. The data base can be
expressed as a set of node graphs representing the serializer operations, and a set of
assertions about the serializer, expressed as specification clauses. The algorithms are
largely rule-driven, where a rule is used to infer a specification clause from known
clauses. The rules we present in this chapter are treated as axioms by the verification

program; this chapter states and proves the rules.

5.2 Extensions to the specification language

As it stands, the specification language presented in the previous chapter is
oriented towards describing external properties of serializers. It has no constructs for
describing the internal structure of a scrializer. ‘The rules we define in this chapter

require a means for describing the node graphs for the operations, and relating cvents

to the node graphs. Therefore, we propose extensions to the specification language.




5.2.1 New symbols and clauses

The extensions to the specification language pose no special problems. They

extend the domain of discourse for the language to include symbols that can represent
' any event (or node), and to include components of events and nodes. For the sake of ,»

simplicity, we will not formally define these extensions, although we could do so.

| * general event symbols - E, El, E2,... are cvent symbols that can be
associated with any serializer event through the symbol map.

* general node symbols - N, N1, N2,... are node symbols that can be
associated with any scrializer node in the node graphs.

Fi

L * extended expressions - E.trans, E.node, F.kind are added as expressions
b that represent the components of events.  N.kind, N.next, N.expr, and
; N.mob expressions are also added. An extension to the domain of

expression  values to include events, transaction identifiers, nodes,
syntactic expressions, and node kinds is necessary. We also include
literals for node kinds.

: *GX (Guarantee Exclusion) specification extensions -

i GX(Node, Node, Node) is added as a syntactic form. The function
Node_excludes_node is used as its meaning. GX(NI1, N2, N3) expresses
the restriction that no transaction can excecute N3 while some other
transaction is exceuting between N1 and N2 (inclusive).

*PX  (Possession  Exclusion)  specification  clauses - We  use
PX(Node, Node) clauses to represent possession exclusion, PX(N1, N2)
cxpresses the restriction that no transaction can execute any node while
some other transaction is exceuting between N1 and N2 (inclusive). We
will define the meaning of PX clauses below.,




5.2.2 Marked and unmarked cvents

In defining the verification rules in this chapter we have occasionally found it
necessary to write ordering clauses where one or more of the events appearing in those

clause are not required to occur. To achieve this, we introduce the notation

'E

to indicate a marked event symbol in the specification clausc. We then modify the

4 ’ definition of a valid symbol map to require that all unmarked event symbols appearing
i : in ordering clauses and GX clauses must map to events that occur in the complete

history for which the map is defined. In all other respects, a marked event symbol is the

same as an unmarkcd event symbol.

The alternative to introducing the 'E nctation is to nor require a valid symbol

map for some history 1o take cvent symbols appearing in ordering and GX clauses into
events that must occur in the history. We would then explicitly require the use of @E
1o require event occurrence in clauscs‘whcrc such occurrence was important. We have
previously rejected such an approach because it leads (o surprising implications for
some specilications, We believe that it is still the right choice: we prefer to have some

additional complication in the kanguage for defining the verification rules so we can

retain some simplicity in the specification language at the user level,

We note here that the Precedes predicate used to give the meaning of ordering

T T Ty
e S PR Y A

clauses is well-defined even when the events do not occur in the histories. Note that the

-

clause
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IE1<'E2

can only be true for some history if both events denoted occur in that history. This can

be stated as the clause:

'E1<'E2 D @E] & @E2

Also note that if an ordering clause mentioning two events that need not occur is false,
it could be due to either the opposite order holding, the two events being the same, or

non-occurrence of either event, as is expressed by:

~('E1<'E2) D ('E2 < 'E1)| ~@E1 | ~@E2

5.3 Some simple inference rules

In this scction we present proofs for several inference rules stated in the
specification language. These rules are presented as specification clauses where one
sub-clause implics another. Note that the rules are actually rule generators: free
variables are permitted to appear to denote nodes and events. The [ree node symbols
arc chosen from the set §N, N1, N2, ...}, and the frec event symbols are chosen from the

set {E, E1LE2, ..}




B i

Pt

w—— -

Y 2 A

AL

* >l 4
G

o e ot e g 3 O
A . et e~

S =

5.3.1 Transaction order

Events belonging to the same transaction must occur in the order prescribed
by the node graph for that transaction. We can write this restriction as an inference

rule;

Transaction order rule;
El.node.next = E2.node & El.trans = E2.trans
DEI<CE2

Proof: For every valid symbol map p and complete history h, since El and E2 are
mentioned in an ordering clause, p maps El and E2 to events that occur in h.
Therefore, there must be events el and ¢2 (with indices 1 and J), such that the
above rule is equivalent to:

(¢l = Nth(h, 1) = E({El}.p)
& ez = Nth(h, J) = E({E2}.p)
& Same_trans(l, J, h)
& c¢l.node.next = ¢2.node )
21«
Since an eater node can not be the next component of any node, ¢2.kind # enter.
Therefore, by the definition of Legal_transaction_step, there must be some index
K € Index_sct(h) such that
(K<J
& Nih(h, K).node.next = ¢2.node
& Nth(h, K).trans = ¢2.trans )

Further, K = | by Legal_transaction_step, which proves that 1 < J.
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5.3.2 Transitivity

The event ordering is transitive. This can be expressed by the following rule:

Transitivity rule:
(E1<E2& EF2<E3)DEI<E3

Proof: By the definitions given in chapter 3, the above specification clause is defined to
be equivalent to:

( Precedes(E({E1}.p), E({E2}.p). h)
& Precedes(E({E2},p). E§E3}.p). h))
D Precedes(E({E1}.p), E({E3}.p), h)
where p is any valid symbol map for the complete history h. By the definition of a

valid symbol map, there must be three distinct events (el, ¢2, ¢3) that occur in h,
which implies that there are three distinct indices (1, J, K) such that the above rule

is equivalent to:
(el = Nth(h, 1) = E({E1},p)
& ¢2 = Nth(h, J) = E{E2}.,p)
& ¢3 = Nth(h, K) = E({E3}.p)
& Precedes(el, €2, h) & Precedes(e?, ¢3, h) )
D Precedes(el, €3, h)
By the definition of Precedes and the cexistence of the indices | and J,
Precedes(el, ¢2, h) is equivalent to 1<), "The other Precedes expressions have
simifar simplifications. "Therefore, the specification clause is equivalent to

(1< & J<K)D(1<K)

which is true by the axioms of integer ordering. “Therefore, the specification clause

is a true statement,




5.3.3 PX clauses

A PX clausc is used to specify possession exclusion. The meaning of a PX

clause is given by:

CHPX4@)}.p.h) = PX_deRN({n1}.p), N({n2}.p), h)
where

PX_defiN1, N2, H) =
v |.J,K € Index_set(H):
if (Nth(H, l).node = N1 & Nth(H, J).node = N2
& Same_trans(H, I, 1))
then Excludes(Nth(H, 1), Nth(H, J). Nth(H, K))

The clause PX(N1, N2) specifies that a transaction exccuting nodes N1 and
N2 has possession (of the serializer containing N1 and N2) after executing N1 and up to
the complction of exccuting N2, and that N1.next = N2. Note that while a transaction
has possession no events from another transaction may occur. There are two rules used

to imply PX clauses:

PX from gain rule:
( NL.next = N2
& ( Nl.kind = enter
| NLkind = dequeue
| NLkind = leave) )
D PX(N1,N2)
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PX from PX rule:
( PX(N1, N2)
& N2.next = N3
& N2.kind # join
, & N2.kind # enqueue )
3 2 PX(N2, N3)

Proof: By contradiction. For the first rule, suppose that the precondition implies
~PX(N2, N3). By the definition of a valid symbol map, there must be three
distinct events (e1, €2, e3) that occur in any complete history h, which implics that
there are three distinct indices (1, J, K) such that:

_ ¢l = Nih(h, 1) & ¢2 = Nth(h, J) & ¢3 = Nth(h, K)
.’ & el.node = N({N1},p) & c2.node = N({N2}.p)
& el.trans = ¢2.trans & el.node.next = e2.node
& (el.kind = enter | el.kind = dequeue | cl.kind = leave)
& ~Excludes(el, €2, €3, h)
k| At the finite history Head(h, I), which is the smallest prefix of h that contains ¢l,
% we know that Legal_step(Head(h, 1), €2, S) is true (where S is the set of node
graphs for the scrializer operations). Further, because Busy(Head(h, 1) is true (by
: the definition of Busy and Gains), €2 is the only event that is a legal step.
: Therefore, no cvents can occur between ¢l and ¢2, which contradicts
~Excludes(cl, ¢2, ¢3, h). Therefore, the PX from gain rule is true. A similar proof

holds for the PX from PX rule.

. ‘ The PX clauses arce useful as imtermediate steps that imply cvent ordering,
4 ‘The following rule is used to imply an event ordering from a PX rule and other

preconditions.
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Event before PX rule:
(PX(NI1, N2) & E<E2 & El.trans = E2.trans
& El.node = N1 & E2.node = N2)
DE<EI

Proof: The above clause is equivalent to the following (for every valid symbol map p
and complete history h):

(PX_defN({N1}.p), N({N2},p), h)
& Precedes(E({ E}.p), E({E2}.p). h)
& E({E1}.p).trans = E({E2},p).trans
& E({E1}.p).node = N({N1},p)

& E({E2}.p).node = N({N2}.p))

D Precedes(E({E}.p), E({E1},p), h)

Because E, El, and E2 are mentioned in ordering clauses, there must be three
distinct events (el, €2, ¢) that occur in h, which implics that there are three distinct
indices (1, J, K) such that, by the definition of PX_def:
(el = Nih(h, 1) = E({El}.p)

& ¢2 = Nth(h,J) = E({E2}.p)

& e = Nith(h, K) = E({E}.p)

& Precedes(e, ¢2, h)

& Excludes(cl, ¢2,¢,h))

which implies Precedes(e, ¢1, h), which implies that the rule is true.
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The other PX rule is quite similar, and can be stated as:

Event after PX rule:
(PX(N1, N2) & El < E & El.trans = E2.trans
& El.node = N1 & E2.node = N2)
D E2<E

sl i “aladc e -
— o e e -
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Proof. Similar to proof for Event before PX.

5.3.4 GRE clauses

The GRE (Guarantee Requires Empty) clause is an intermediate step used to

infer GX (Guaranteed Exclusion) clauses. The definition of the GRE clause is:

C({GRE(N1, N2)},p,h) = GRE_defIN({N1}.p). N({N2}.p). h)

where

GRE_def{nl, n2, h) =
v 1J.K € Index_sct(h):
if ( Nth(h, 1).node = n2
& Nth(h, }).node = n2.match f
&l<K<) j
& Same_trans(h, 1, 1))
then ~Eval( Head(h, K), nl.expr)

B ahaa o ST T

The intuitive meaning of GRE(N1, N2) is that the gueue or crowd denoted by N2.mob

must be empty in order for the expression NLexpr to be true.
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There are (wo rules that can be used to infer GRE clauscs:

GRE [rom empty rule:
; Nl.expr = Empty_expr(N2.mob)
3 ' D GRE(N1, N2)

GRE [rom expression rule:
( Nl.expr = And_expr(Empty_expr(N2.mob), G)
| Nlexpr = And_expr(G, Empty_expr(N2.mob)) )
D GRE(NI, N2)

Note that we have had to add some ad hoc extensions to the specification language. G
| denotes a boolean-valued  expression, Empty_expr(N.mob) denotes either
queucSempty(N.mob)  or  crowd$empty(N.mob), as  appropriate,  and

1 ’ And_expr(G1, G2) denotes the expression that is the conjunction of the two guarantecs.

Proofl: By definition of GRE_def and the Eval function. For the first rule, suppose that
the guarantee is crowd$empty(C). Then for any history that contains a join event
for that crowd but does not contain the corresponding leave event the guarantee
will evaluate o false, which proves the rule. Similar reasoning holds for the first
rule if the guarantee is queucSempty(Q). A similar proof holds for the GRE from

expression rule, j

o oy 7. :
ISR < AN SR
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5.3.5 Using GX clauses

GX clauses are used to indicate where events are excluded because of
guarantees being false. For example, if a guarantee for a queuc is crowd$empty(C),
where C is a crowd, then a dequeue event with that guarantee is prohibited from
occurring between a join and a leave event for any transaction for that crowd. The

following rule is used to infer GX clauses.

GX from GRE rule:
(NLmatch = N2& N2 # N
& (N1.kind = join | N1.kind = enquecue)
& Nkind = dequeue
& GRE(N.expr, N2.mob) )
D GX(N1, N2, N)

The clause GRE(N1, N2) used above is true it the expression Nl.expr requires the

queue or crowd N2.mob to be empty for the expression to be true.

Prool: By contradiction. Suppose that GX(NI,N2,N) is not true, yet the
preconditions are met. By the definition of a valid symbol map, there must be
three distinet events (e, €2, ¢) that occur in any complete history h, which implics

that there are three distinet indices (1, J, K) such that:

RN T e o e IR TR EST L e Y o




- e

(el = Nih(h, 1) = E({N1}.p)

| & €2 = Nih(h, J) = E({N2}.p)
‘ & e = Nih(h, K) = E({N}.p)
| & el.node.match = e2.node
] t & (el.kind = join | c1.kind = enqucue)

& e.kind = dequeue
& Precedes(el, e, h) & Precedes(e, ¢2, h))

Further, from the GRE clause we know that the guarantee for event ¢ must be false
for any prefix of h that contains ¢1 but does not contain €2. Since ¢ occurs after el,
we have a contradiction (due to Legal_dequeue), since e is a dequene event that
occurs when its guarantee is false. Therefore, the GX from GRE rule is true.

GX clauses are a useful intermediate step that can be used (o infer event

orderings.

Event before GX rule:
(GX(N1, N2, N) & E<E2 & El.trans = E2.trans
& E.node = N & El.node = N1 & E2.node = N2)
DE<EI

Proof: Because F, El, and E2 are mentioned in ordering clauses, for any valid symbol

map p and complete history h, there must be events (cel, ¢2. ¢) occurring at distinct
] } indices (1, J, K) such that: 1
¥

i
4

l
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(el = Nth(h, 1) = E({El}.p)
& €2 = Nih(h, 3) = E({E2}.p)
& ¢ = Nth(h, K) = E({E}.p)
& e.node = N({N}.p)
& cl.node = N({N1}.p)
& e2.node = N({N2}.p)
& Precedes(e, €2, h)
& Same_trans(h, 1, J)
& Node_excludes_node(cl.node, e2.node, e.node, h) )

By the definition of Node_excludes_node we can infer:
Excludes(el, €2, ¢) & Precedes(e, €2, h) & ¢ = el

which implies that Precedes(c, el, h), which implies that the clause E< El, and
therefore the rule, is true.

As with the PX clause, there is a symmetric rule to Event before GX.

Event after GX rule:
(GX(NI, N2, N) & EI < E & El.trans = E2.trans
& Enode = N& El.node = NI & E2.node = N2)
D E2<E

Proof: Similar to proof for Event before GX.
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5.3.6 FIFO queues

Scrializer queues are scrved strictly first-in-first-out. The following rule is

used to infer event orders from the use of FIFO queues in serializers.

Event from FIFO rule:
( E1 <E2 & ElL.kind = enqueue & E2.kind = enqueue
& El.node.mob = E2.node.mob '
& E3.trans = El.trans & E4.trans = E2.trans

‘ & E3.node = El.node.next & Ed.node = E2.node.next )
| S !E3C EA
| Proof: By contradiction. First, suppose that E3 occurs (we are not required to do so by

| . .

» the clause). As in the above proofs, EI, E2 and E4 are unmarked events mentioned

f , in ordering clauses; so they must occur. There must be four events (el, €2, €3, ¢4)
with distinct indices (1, J, K, L) such that:

1 (el = Nth(h, ) = EGEL}Lp)

& €2 = Nith(h,J) = E({EF2}.p)

& €3 = Nih(h, K) = E({E3}.p)

& ¢4 = Nih(h, L) = E({F4}.p)

& Precedes(el, €2, h)

& cl.kind = enqueue & c2.kind = enqueue

& Same_trans(l, K, h) & Same_trans(J, ., h)
& cd.node = cl.node.next & cd.node = e2.node.next )

We need o prove that Precedes(ed, 4, h), which we do by assuming
Precedes(c4, e3,h), and  finding a contradiction, By the  definition  of
Legal_transaction_step we know that Precedes(el, €3, h) and Precedes(c2, o4, h).
F o Let hl be the kargest prefix of h that does not contain ¢4, We will show the
contradiction by considering the predicate Legal_step(h’, ¢4, S). where S is the set

Wi Y .

s st iy o g
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of node graphs for the serializer.
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Since  edkind = dequeue, Legal_step(hl, e4,S)  requires
Legal_dequeuc(hl, ¢4) be true, which requires that Eval be true for the guarantee,
and that Head_cnqueuc(hl, J) be true. Head_enqueue(hl, J) is only true if every.
other transaction with an enqueue event for the queue ed.node.mob that occurred
in hl prior to ¢4 has a corresponding dequeue event that has occurred in hl.
However, we know that €3 has not occurred in hl by our assumption of
Precedes(ed, €3, h). Therefore, cither Precedes(e3, ¢4, h), or ¢3 does not occur.

The proof that €3 occurs is simple. We know that e4 occurs in h, since it is
denoted by an unmarked event mentioned in an ordering clause. Therefore, when :
¢4 occurs, ¢3 must have occurred in the history hl by the definition of |

Legal_dequeue,

5.4 Evaluation of guarantees

In further rules we will nced to express the evaluation of guarantees. The
clause EVT(G, E) is used to specify that cxpression G always cvaluates to true
immediately before event E. The clause EVH(G, E) is used to specily that expression G
always evaluates to false immediately before event E. In translating from specification
kainguage to definition language we will assume that, il the event denoted by E occurs at
index 1in history h, then

CHEVI(G, E)}.p.h) = Eval(Head(h, 1-1). {G})
C(EVE(G, E)}.p.h) = ~Eval(Hcad(h, 1-1), {G})
When the event denoted by E does not occur, the EVT and EVF clauses are undefined.

We are careful to only use these clauses in contexts where such an event does occur.,
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The following rule can be used to infer EVF clauses:

EVF rule:
((Elkind = enqueue | E1.kind = join)
& El.node.next = E2.node
& El.trans = E2.trans
& F1<E<E2)
D EVF(Empty_cxpr(El.mob), E)

Proof: Suppose that M is a queue. By the delinition of Legal_transaction_step, there
can never be more dequeue events than enqueue events for any transaction.
Thercfore, by the definition of Csize, the queue is empty (Csize(M) = 0) only if all

i transactions have the same number of cnqueue c¢vents as dequeue events
' . » . 2l . -~
immediately preceding E. However, the transaction El.trans has an enqueue event
i (E1) that has occurred without the matching dequeue event (E2). Thercfore, the

queue must not be ecmpty. A similar proof holds if M is a crowd.

The following rule can be used to infer EVT clauses:

EVT rule:
(v E1LLE2:
if ( ELtrans = E2.trans & El.node.mob = M
& El.node.match = F2.node)
then E< ELPIE2<E)
D EVI(Empty_expr(M), F)

4 Proof: First, we note that within the guantification the events E and El are required o
. oceur, yet the event E2 is not required to oceur, since it is marked. ‘The condition
1 that we are expressing with the quantilied clause is that for every pair ol events
denoted by ET and E2 the event denoted by E cither occurs before (or is the same
as) EL or occurs after E2. Note that if EFKCE is true, then 'E2<FE s Talse if E2
]
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does not occur. In order for Empty_expr(M) to be false when evaluated
¥ immediately before E there must be some transaction that is in M immecdiately
: ‘ before E, which mcans that the enqueue {or join) event (call it E1) occurs before E,
- but the dequeue (or leave) event (call it E2) does not occur before E. We can
& express this requirement as

{ E1<E<'EF2
1 which is prohibited by the precondition
2 E<El|!E2<E

and therefore the clauses always evaluates to true immediatcly before E.

The above clause uses internal quantification over all events, which is another

Saa

extension to the specification language. It is difficult to use the above rulc as it is in a
verification program due to the internal quantification. The set of all events is infinite,

and cannot be enumerated. We can prove that the quantification clause is satisfied by

g contradiction: proving that there can not exist a transaction with events E1 and E2 (as
given above) where the clause within the quantification is not satisfied. This method

will be further discussed in the next chapter.,

The following rules can be used for guarantees that are conjunctions or

& disjunctions, These rules are sufficiently simple that we will omit the proofs.
1 EV'T from conjunction rule:
! (G = And_cxpr(G1. G2)
l : & EVI(GL, E) & EVI(G2. F))
:i D EVI(G, E)
‘, A
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EVT from disjunction rule:
(G = Or_expr(G1, G2)
& (EVT(GL, E)| EVT(G2, E)))
D EVI(G, E)

EVF from conjunction rule:
(G = And_expi(G1, G2)

& (EVF(G1, E)| EVF(G2, E)))
D EVF(G, E)
é‘ : EVF from disjunction rule:
= (G = Or_expr(Gl1, G2)
= & EVF(G], E) & EVF(G2, E))
i .
= D EVK(G, E)
| We have used G, GI1, and G2 to denote guarantees, and And_expr and Or_expr to
denote conjunctions and disjunctions of guarantees.
5.5 Priority of dequeue over enter and leave
i If there are queues with true guarantees when possession is released, a
dequeue event for once of those queues will occur before an enter or leave event.
il"
‘ Suppose we know that an enquene cvent E1 occurs before an external gaining
|
t event E. To show that E must occur after the dequeue cvent E2 corresponding (o E1, we
, must know that the guarantee for El is true immediately prior to E, and that there can
. be no transaction with a false guarantee that is in the queue ahcead of the transaction for
I
“ 1 E1 when E occurs.
|
!
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Event from ready queue rule:
((Ekind = enter | Ekind = leave)
& El.node.next = E2 & El.trans = E2.trans
& El.kind = enqueue
& EVI(El.expr, E) & E1 < E
& v E3,E4:
if ( E3.kind = enqueue & E3.mob = El.mob
& E3.trans = FA.trans
& E3.node.next = F4.node
& E3<El)
then EVT(E3.expr, E) | 'E4<E)
k DIE2<E

Proof: We will outline a proof by contradiction. Assume that the gaining event E
precedes the dequeue event E2, such that E1 < ECE2. The quantification over E3
and E4 is a precondition that requires every transaction that has cntered the queue

before El.trans to cither have a true guarantee (immediately before E) or to have
left the queue before the gaining event E. Therefore, there can be no transaction
with a false guarantee in the queue ahead of El.trans. However, the gaining event
E cannot occur while there is a queue with a true guarantee, which is true for
El.mob. This is a contradiction, so we can infer that if E2 occurs, it must occur
before E. By similar reasoning, E2 must occur, since il it does not occur there will
be a ready queue when E occurs (FE must occur, sinee it is an unmarked cvent).

Note that the above rule was expressed as implying 'E2 < E, which not only
implics an ordering between events, but also implics that the event denoted by E2

occurs, since any event the precedes an event that occurs must also occur,
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The above rule is admittedly long and complex. We can shed some more light

on the reasoning behind its form by considering some examples.

* Suppose that there are cvents E3 and E4 such that E3 < El, and E4 does
not occur (using E, E1, E2, E3, and E4 as in the abovc rule). Then the
precondition expressed by the quantification must be false, which means
that we cannot infer E2 < E. This should scem reasonable, since by the
FIFO queue rule we know that E4 must precede E2 iff E2 occurs, which
implies that E2 docs not occur.

* Supposc that there are events E3 and E4 such that EVF(E3.expr, E) and
E3<El. Then it is possible for E3.trans to be at the head of the queue
when E is ready to occur, which would imply that E < E4, or that E4 did
not occur at all.

i The rcader may note that we have only considered a single queue in the above

rule. 1t may be imagined that all of the precondions were met for two queues, yet one
queue was arbitrarily chosen to procecd, which then made the head guarantee of the
other queue false, which then allowed the gaining event E to occur. Such a situation is
covered by our rule, since we do not specify evaluation of the guarantee at any
particular time, but rather immediately before the event E in any context. Intervening
dequeue cvents from other queues are unimportant, since they will only postpone the

occurrence of E, not change the precondition EVE(ELexpr, E).
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5.6 A method for proving service

A service specification typically states that for every complete history and
valid symbol map, the occurrence of an enter event for some transaction implies the
occurrence of the exit event for that transaction. In proving this, we typically need to
prove that the occurrence of any event (exit cvents excluded) in a transaction implies
the occurrence of the next event in the transaction. Another way to state that the
occurrence of one event implies the occurrence of another is to say that every complete

history that contains the first event contains the second.

For most events in a transaction, if an event occurs, the successor event in that
transaction must occur. For simple serializers, the occurrence of an event that gains
possession implies the occurrence of a corresponding event that releases possession.
Further, we have assumed that accesses to the resource terminate, so the occurrence of a
join event implics the occurrence of the corresponding leave event. There are only two
kinds of events where the occurrence of an event does not imply the occurrence of the
successor: exit events, because they have no successors; and enqueue cvents, because
they might never have true guarantees whenever possession is released, or because there

might always be another queue ready whenever possession is released.

The method we propose for proving that an enqueue cvent requires a dequeue
event is 1o first suppose that the dequeue cvent does not occur, then prove a
contradiction: that a complete finite history exists where there is a ready queue at the

end of the history.

-124 -

i
i
!
]
i




Suppose that we want to prove @E1 D @E2, where El and E2 belong to the
same transaction, and El precedes E2 if both events occur (which can be written as
@E1 & @E2 D 'E1<'E2). We nced to show for every enqueue event E3 with
corresponding dequeue event E4 that if E3.trans = El.trans then the occurrence of E3

implics the occurrence of E4 (WE3 D @EA4).

If an enqueue event occurs for some queue and the dequeue event does not

occur, then we say that its queue is blocked. 1f a queuc is blocked, then we can infer the

following:

* If every join cvent for some crowd requires a preceding dequeue event

from a blocked queue, then the crowd will eventually become empty.

! This is true because when the queue is blocked, there can be no further
join events, and every join event requires that a leave event occur.

* If cvery enqueue event for some queue Q requires that a dequeue event :
for a blocked queue B must occur (because the enqueue cvent must
follow some other dequeue event that is waiting for B to empty), then Q
will cventually become either blocked or empty. Since the enqueue event
for Q will not occur, then no new transactions will be added (o Q, which
implics that only dequeue cvents for Q can possibly occur.  Eventually
cither Q is empty or a transaction with a false guarantee is at the head of

Q.

*If every occurrence of an enqueue cvent for some queue implics the
occurrence of a corresponding dequeue event, and the gqueue will
cventually become  cither blocked or empty, then the queue will
cventually become empty.

By saying that a condition "eventually becomes™ true, we mean that for every complete

history there is a event where the condition is true at every event after that event.
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The method is now clear: to prove the contradiction, we assume that the

dequeue event (E) docs not occur, that certain queues and crowds will become empty,
and that certain queucs will become either cmpty or blocked. If these additional
assertions are sufficient to prove that the guarantee for E is true, and that there is no
other dequeue event with a false guarantee that is blocking E, then we have found a

contradiction, and actually proved that E must occur.

We will not present rules for proving service. The number of supporting rules
is relatively high, and the additional material would not introduce any new concepts.

The method of proving service will be further explained in the next chapter.

5.7 Rule-based proving of FIFO priority specification

In this section we present a proof based on successive applications of the rules
we have presented in this chapter. As presented in the previous chapter, the FIFO
readers-writers problem has the following (partial) priority specification:

R1-enter < Wl-enter D R1-exit < Wl-exit
A rule-based proof of the above clause takes two stages: derivation of intermediate
clauses (such as PX, GRE, and GX clauses), and use of the rules that imply event
orders. Note that the first stage need only be performed once for any particular

serializer, while the sccond stage is usually different for every specilication clause.
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In the first stage, we examine the node graphs and use the PX from gain rule
to derive the following PX clauses, which indicate possession exclusion:
PX(R*-enter, R*-cnqucuc(x.xq))
PX(R*-dequcue(x.xq), R*-join(x.rc))
PX(R*-leave(x.rc), R*-exit)
PX(W*-enter, W*-enqueue(x.xq))

PX(W*-dcquene(x.xq), W*-join(x.wc))
PX(W*-leave(x.wc), W*-exit)

We then examine the node graphs and use the GRE from empty rule and the GRE
from expression rule to derive the following GRE clauscs:
GRE(R*-dequeue, W*-join)

GRE(W*-dequeue, R*-join)
GRE(W*-dequeue, W*-join)

Using the GRE clauses and the GX from GRE rule, we derive the following GX
clauses:
GX(W*-join, W*-leave, R*-dequeue)

GX(R*-join, R*-lcave, W*-dequeue)
GX(W*-join, W*-lcave, W*-dequeue)

In the second stage of the proof, we prove the implication by assuming the
precondition, and deriving the consequence. We use the Transaction order rule to

derive:




(R1-enter < Rl-enqueue < R1-dequeue
< R1-join < R1-lcave < R1-exit)

&

(Wl-enter < Wl-enqueue < Wl-dequeue
< Wl-join < Wl-leave < W1-exit)

ii
{
|
¢

Then we perform the following inferences, using the indicated rules:

Event order Rule applicd
R1-enter < Wl-enter Assumed
R1-enqueue < Wl-enter Event after PX

R1-enqueve < Wl-enqueue  Transitivity

R1-dequeue < Wl-dequeue Event from FIFO

R 1-join < W1-dequeue Event after PX

R1-leave < Wl-dequeue Event after GX

R I-exit < W1-dequeue Event after PX ‘
R1-exit < Wl-exit Transitivity

5.8 Comments on the verification rules

While the intent of defining inference rules in the specification language is to
simplify verification, one unfortunate side-cffect has been 1o add numerous clauses to
the specification language. These additions have made the specification language far

closer to our definition language than we would like. As we add more extensions we

3 begin to lose the simiplicity that proofs in the spectfication language have over proofs in
the dehnition language.  Despite these misgivings, the rules do appear 1o work at a

higher level than could be obtained from the definition language.
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We have added a means for avoiding the requircment that every event
mentioned in the ordering clauses must map (via the symbol map) to an event that
occurs in the complete history on which the map is based. There is no inherent reason
why this ability should not be extended to the user, although we have chosen not to do
so. This feature is only rarcly used, and continues to have potentially surprising
interpretations, as evidenced by the Event from ready queue rule, where the occurrence

of an event was proved without resorting to the @E notation.
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6. Automatic Serializer Prover

‘The previous chapter presented verification rules that were defined in an
eatended specification language. This chapter describes a program that makes use of
those rules. While limited to dealing with simple serializers and specification clauses

; that do not mention the rank of an event, many of the principles used are applicable to

more general serializers, The program, called ASP (Automatic Serializer Prover), has

been tested on a number of versions of the readers-writers problem.

In this chapter, we discuss the structure of ASP, first by giving an overview,

{ then by detailing some of the algorithms used. The results for the readers-writers

- examples are given, and we discuss how ASP could be extended to accommodate

various extensions to simple serializers. R

6.1 Overview of ASP

The input to ASP is a description of each operation of a serializer and the
\ specification clauses for the serializer. We use ASP interactively to prove that the
1 specification clauses are satisfied, or to examine why they are not. The execution of
.1 ASP has the following phases:
{

* Initialization: This phase builds representations of the node graphs for
the scrializer operations given the text for the opcralions."‘ In the

This allowed us to concenteate our efforts on verification rather than parsing.
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remainder of this chapter, we will make no distinction between the node
graph representations used by the program and the node graphs used in
the semantic model.

* Static analysis: This phasc examines the node graphs to determine
possession exclusion, represented by the PX clauses mentioned in the
previous chapter, and guarantee exclusion, represented by GX clauses.
Note that we also make no distinction between the specification clause
representations used by the program and the actual clauses.

* Verification: In this phase we attempt to prove cach specification clause
given. Typically, a specification clause is given as an implication
consisting of a precondition clause and a consequent clause. Proving such
a clause involves assuming the precondition and using the inference rules
described in the previous chapter to derive the consequent clause. When
a consequent clause is derived, further rules may be applied to derive new
clauses.

The node graphs, specification clauses, and other data are kept in a structure

called the data base, which is composed of the following parts:

* Node graphs: ‘There is a node graph for cach operation of the scrializer.
Fach node has a structure as described in Chapter 3. Data structures
representing expressions (as in N.expr), queues and crowds (as in
N.mob), and kinds (as in N.kind) are referred to by the node graphs.

* Transaction stack: ‘There is a stack of transactions that represent the
transactions mentioned in the specification clauses.  Fach transaction
symbol in a specification clause has a corresponding transaction in this
stack. Further transactions may be added to this stack due to attempted
proof by contradiction, as mentioned in the previous chapter. When such
an attempt suceeeds or fails, such a transaction is removed from the stack.
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* Asscrtion stack: There is a stack of specification clauses that have been
asscrted and the rules used to assert the clauses. The asserted clauses are
those that have been assumed to be true or have been added by
application of the inference rules to the clauses in the assertion stack.
This stack provides a record of which rules led to particular event
orderings, as well as an cfficient mechanism for removing assertions.

*

Event stack: There is a stack of the events that exist (although do not
necessarily occur) for the transactions in the transaction stack. This stack
is closely coupled to the stack of known transactions, since cach ¢vent in
this stack must have a known transaction. Whenever a transaction is
added to the transaction stack, an event for every node that the
transaction /may exccute is added to the event stack, When a transaction
is rcmoved from the transaction stack, all events for that transaction are
removed from the event stack.

»

Event order matrix: There is an extensible square matrix used to
represent event orders. There is a row and a column for cach event, with
the entries indicating the ordering between the events. The row and
column index for a particular event are identical, and the index for an
event in this matrix corresponds to the index in the event stack for the
event. The matrix is extended or retracted (in both dimensions) as the
event stack is extended or retracted.

6.2 Static analysis phase

The static analysis phase inserts PX and GX clauses into the data base

according to the node structure of the operations. 1t is performed in advance of

examining the specification clauses. The purpose of the static analysis phase is (o

perform steps that can be done once for a given serializer, and avoid performing these

steps for every clause we wish Lo prove,

e e o
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The PX (Possession Exclusion) clauses are generated by examining the node
! ' graph to determine when a transaction is in possession of the serializer, For simple

serializers only the PX from gain rule is necded.

' The GX (Guarantee Exclusion) clauses are generated by examining the
guarantees on enqueue statements during the initial pass over the scrializer. They are
generated according to the GX from GRE rule, which depends on the GRE from
empty rule and the GRE from expression rule. As long as the guarantees only involves |
testing the emptiness of crowds or queues, or conjunctions (G1 & G2) of tests for
emptiness, GX clauses can be generated for the guarantees during static analysis.
Guarantees that are disjunctions (G1]G2) or negations (~G) do not generate GX

clause during static analysis.

6.3 Verification phase

A specification clause is usually written as P2 Q, where P and Q are

specification clauses that do not use implication clauses.  Verifying that P2 Q s

k satisficd involves assuming that the precondition clause P s true, and showing that the
K consequent clause Q is therefore true. Note that the clse P is assumed (o be true fora
particular choice of complete history and valid symbol map.  The  verification

methodology allows us to prove:

vph:(PDQ)

‘ The assumption and proof should not be viewed as:




(vph:P)D(Vph: Q)

When a clause not previously in the asscrtion stack is asserted, we say that it is
inserted into the data base. When a clause is inscerted, ASP checks certain rules to
determine whether they are immediately applicable. These rules are called insertion
rules, and arc: Transitivity, Event before PX, Event after PX, Event before GX, Event
after GX, and Event from FIFO. Ifany arc applicable, we assert the event order clauses
they imply. This, in turn, may lead to the asscertion of further clauses, and so on. This

process is complete when no further insertion rules are applicable.

In asserting an cvent ordering, we need to have computer representations of
cvents.  In order to have cvent representations, we need transaction and node

representations. The initialization phase built the nodes. The transactions and cvents ]

are built by examining the specification clause to determine which transactions are
mentioned in the clause. These transactions, and their associated events, are added to

the data base.

For cach transuction that is added duc to being explicitly named in the
specification clause, the Transaction order rule is used to determine the order of the
events that belong to the transaction. "This leads 1o the insertion of event order clauscs, h
but docs not immediately lead to the application of any rules other than the transaction .

order rule and the transitivity rule, since there is no known initial ordering between

events from different transactions.




To prove an implication, we assert the precondition and attempt to derive the

' result. The precondition for a specification clause is asserted by performing operations
on the data base to assume the various parts of the clause. For example, one
component of the specification clause may be an event ordering, E1 < E2. This clause is
asserted by calling the add_order operation of the data base. If this clause was not

previously asserted, the insertion rules are applied by this operation.

6.4 Evaluation of guarantees and anonymous transactions

In several piaces in ASP it is necessary to evaluate a guarantee to determine if
a queue is ready. The EVT and EVF clauses mentioned in the previous chapter are
used to indicate the evaluation of guarantees. EVI(G, E) is true for some history that
contains E if the guarantece G evaluates to true ia the largest prefix of the history not
containing E. EVF(G, E) is true if G evaluates to false in that prefix. For example, if
the cevent E occurs between corresponding enqueue and dequeue cvents for some

transaction, as in:

X-enqueue(Q) < E < X-dequeue(Q)

then we can assert the clause
EVI(queucsempty(Q), E)
In some cases, it is not sufficient to simply use the EVT and EVFE rules

presented in the previous chapter. Consider the following concurrency specification for

the FIFQ readers-writers serializer:

— e
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R1-enter < R2-enter € R1-lcave & GX(R1-enter, R2-enter, W*-enter)
D R2-join < R1-leave

In proving this specification, we need to prove s
EVT({crowd$cmpty(x.wc)}, R 1-leave) i
The insertion rules are sufficicnt to prove that the writers crowd (x.wc) is empty when
the readers crowd (x.rc) is not empty. However, the rules we have presented do not
immediately allow us to conclude that the EVT clause above is true, since we must
prove the clause for all writers.
A more general method of proof is available to us, based on proof by i

contradiction. If we assume that a writer is in the writers crowd, and that leads to a

contradiction, then the writers crowd must be empty. To be exhaustive in choosing the

writer, we have two cases:

1: The writer can be a writer that already exists in the transaction stack. To
assume that some writer W is in the writers crowd when R 1-leave occurs,

we assert:
W-join < R 1-lcave < W-leave

and apply the insertion rules as necessary. A contradiction occurs if this
feads o E<E being asserted for any event E (cyclic event orders are
prohibited by Legal_transaction_step). 1f no contradiction occurs, then
we cannot prove the FVT clause. IF all writer transactions in the
transaction stack cannot be in the writers crowd, it is necessary o apply

the second case.

2. If no writer in the transaction stack can be assumed to be in the writers
crowd, it is stll possible that there is some other writer that can be in the
crowd. ‘Therefore, we invent an anonymous transaction and place it in the
transaction stack, and assume that the new writer is in the crowd, as in the
first casc. I assuming that the anonymous transaction in in the crowd
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leads to a contradiction, then we can assume that the writers crowd is
empty at R1-leave, and therefore the EVT clause is true.

The above method is casily generalized to proving any queue or crowd empty.

6.5 Checking for ready quecues

The Event from ready queue rule is difficult to apply, since there is nested

;_ quantification. We start by cxamining the data basce for dequeue events where the
¥ guarantecs are true immediately preceding enter or leave cvents. Consider some
transaction X, where X-dequeue has a true guarantee immediately before some enter or
leave event, which we will call E. IT E is known to occur after X-enqueue, then the only

way that E can occur before X-dequeue is for there to be a transaction in the same

queue, ahead of X, with a false guarantee. If such a transaction exists, we say that it

blocks X-dequeue.

If no known transaction can block X-dequete, it may still be possible that
some other transaction not mentioned in the specification clause can block X-dequeue.
*7\‘ Therefore, we create an anonymous transaction Z. for an operation (provided that that
transaction can have an enqueue cvent for the same queue as X-dequceue), and assert

[ that

7-cnqueue € X-enqueue € Z-dequeue

where X-enqueue and Z-engueue occur for the same queue. If the guarantee for

/-dequeue is true immediately before E, then 7 cannot block X, Further, if asserting

-




that Z-dequeue occurs after E causes a conflict, then there can be no such transaction Z.

If there is no Z, for any operation of the serializer, that can block X, then X-dequeue

must occur before E.

6.6 Proving by cases

One potential drawback of using the insertion rules is that some relatively

simple proofs will be wnachicvable because there are not enough assertions. In

Ev
particular, if enter events E1 and E2 are known to occur, yet the order of E1 and E2 is
unknown, we may be able to prove a clause if we assume either E1< E2 or E2 < El, yet
= be unable to prove the clause if no order is assumed. ASP can perform some of these

proofs by cases: where the order of E1 and E2 is unknown, first assume E1 < E2 and

perform the proof, then retract the assumption of E1< E2, assume E2<EIl, and

perform the proof. If the desired result is obtained in both cases, the proof is valid,

provided that E1 and E2 arc known to occur.
The concurrency specification clause given for the FIFO serializer was overly
restrictive, since it specified that
R1-enter < R2-enter < R1-leave

and the result (R2-join < R1-leave) can be shown to be true even if R2-enter < R1-enter.

| The following clausc is a stronger version of the concurrency specification that requires

proofl by cascs:
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GX(R1-enter, R2-enter, W*-enter) & R2-enter < R1-leave
D R2-join < Rl-leave

Note that the GX clause does not specify that R1-enter < R2-enter, although the GX
clause is trivially satisficd if R2-enter < R1-enter. Initially the precondition is asserted.
Then ASP first assumes R1-enter < R2-enter, proves the consequent clause, retracts the
assumption, then assumes R2-enter < R1-enter, and proves the consequent clause. That
R1-enter and R2-enter occur can be shown in two ways: they are mentioned in a GX
clause, and events subsequent to them (by Legal_transaction_step) are mentioned in an

ordering clause.

6.7 Proving guaranteed service

In many scrializers we would like to prove that every transaction rece.ves
service, i.e., for every enter event there is an exit event. The following is a typical

service specification clause:

@T-cnter D @T-exit
Proving guaranteed service for a transaction is performed by proving that cach dequeue
event that the transaction can exccute is guaranteed to occur, since we have assumed for
simple serializers that all other kilias of events will occur in complete histories given

their predecessors.

Proving that a dequeue cvent occurs is largely done by contradiction: We
assume that the dequeue cvent does not occur, which implics that its queue is not

empty, and that any crowds that require dequeue events from that gueue will empty.
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This is generally enough to show that the guarantee for the dequeue event is true. The

dequeue cvent must occur if no other queue is ready.

In this method, evaluating the guarantees must take place immediately prior

o e o

to some event, since that is the basis of our evaluation mechanism. But there may be no
actual event occurring, especially if no further enter events occur. Therefore, we invent
a fictitious event with certain properties. We assume that some "quiet point™ event QP
occurs, such that the event QP gains possession of the serializer only when no queues
are ready, and QP occurs late enough such that ¢very crowd or queue that must empty
has empticd. If the guarantee for the dequeue event in question is true at QP, and there
can be no blocking of the dequeue event, then the dequeue event must precede QP,

provided that QP docs occur. We can guarantee that QP does occur if every other

queue is not rrady at QP. At this point we have proved that QP does occur, and the
dequeue event precedes QP, but we assumed that the dequede cvent does not occur.

This is the contradiction that proves that the dequeue event does oceur.

oo
TP
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For extended serializers, it is possible for a reguest kind to have guaranteed
service, yet the quict-point method is too weak. To illustrate, suppose a scrializer has
the following operation:

op = proc (x: cvt)
if queueSempty(x.q)
then % O-enql
enqueue x.q until crowdSempty(x.c)
else % 0O-enq2
enqueue x.q until crowdSempty(x.c)-& ~crowdSempty(x.cc)
end
join x.c % 0-joint
end

join x.cc % 0-join2

end

end op

For simplicity, we will supposc that op is the only operation of the serializer that can get
sole possession (uses cvt). The QP event will not occur until x.c is empty and x.cc is
cmpty. However, at QP the guarantee for O-enq? is false. Therefore, it seems possible

for QP to occur before O-enq2, so guaranteed service cannot be proven.

One way to prove guaranteed service for the above serializer is to split the
proof into two cascs dependent on the test gueueSempty(x.q) in the if statement. if the
test was true, the QP mcethod will work. 1 the test is false just before O-¢ng2 occurs,
then there must be at least one other transaction, call it Ol, that is in x.¢g when the
O-eng2 occurs, But then there are two more cases, based on whether or not
crowdSempry(x.c). 1f x.cis empty, then the guarantees for x.g must be true, and O-deg2
must occur before Ol-lcave, which must occur before QP, which guarantees service. F
x.cc 18 not empty, then there is yet another transaction, call it O2, such that x.c will be
cmpty at O2-join2, which implics that the guarantees for x.g will be true before

02-1cave2, which must precede QP. Although this analysis by case would be expensive,
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it would be possible to add to ASP.

The reader might object that the above example is quite contrived, and we
would agree. We have discovered no convincing realistic examples that require more
than the simple QP method, even when extensions to serializers are considered. For

this rcason, ASP supports only the simple QP method.

6.8 A sample verification

This section presents a sample verification performed by ASP. Figure 4 figure
shows the results produced by using ASP o verily a priority clause for the FIFO
readers-writers serializer presented in Chapter 2. Input from the user is indicated by
underlining. The user starts the session by typing in the name of the serializer that
should be used. That name is interpreted as a file name, where the file should contain a
description of the serializer in the format required by ASP. Then the user types the

clause to be verified.

The response from ASP indicates whether the clause could be proved, and
shows the assertion stack after the insertion rules have been applied (the first clause
printed is the most recently asserted clause). This information is usually sufficient o
cnumerate the steps of the proof, or o demonstrate why the clause could not be proved.
While we will not describe them in this thesis, additional aids are present for more

detailed inspection of the steps that ASP uses to prove clauses.
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Figure 4. A sample verification by ASP

Name of serializer: FIFQ
1.012 seconds to setup.

Specification clause: Rl-enter < Wl-enter => Ri-exijt < Wil-exijt
Proved Implties(Rl-enter < Wl-enter,
Rl-exit < Wl-exit)

base[39:
Rl-exit < Wl-dequeue-xq: Possession exclusion,
Ri-leave-rc < Wi-dequeue-xq: Guarantee exclusion,
R1-join-rc < Wi-dequeue-xq: Possession exclusion,
R1-degqueue-xq < Wl-dequeue-xq: FIFO queues,
Rl1-enqueue-xq < Wl-enter: Possession exclusion,
Ri-enter < Wl-enter: Assumed,
TR: Wi-enter: From clause,
TR: Rl-enter: From clause]

1.376 seconds.

Note in Figure 4 that not all of the rules are shown. The default used is to
omit showing the clauses asserted in the static analysis phase, and use of the Transaction
order and Transitivity rules. The notation "base[39:" appcearing in the middle of the
figure indicates that the assertion stack has 39 members. At the end of the figure the

amount of processor time needed for the proof is given. This figure includes the

processor time necessary to parse the expression, apply the verification rules, and to
print the results. ‘The notation "TR: Wi-enter: From clause” is used 1o indicate that
the transaction W1 was added to the transaction stack since the transaction was
mentioned in the specification clause (for uniformity in the program this is treated as an

assertion).
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6.9 Performance results

In this section we present a number of verifications performed by ASP on

variation of the readers-writers problem. Each test is given as a specification clause to
be verified (or not verified) for different readers-writers serializers. Figure S presents
these specifications, most of which have been mentioned in previous chapters as

specifications of different properties for the readers-writers problem.

Figure 5. Readers-writers tests for ASP

Wpri: Writer's priority
R1-join < Wl-enter < R2-enter < W2-enter < Rl-leave
J W2-join < R2-join

{NWPRI): Modified Writer's priority
Wi-enter < Rl-enter < W2-enter < Wl-leave
J w2join < rljoin

Rpri: Reader's priority
Wl-enter < W2-enter < Rl-enter < Wl-join
D Ri-join < W2-join

(NRPRI): Modified Reader's priority
Rl-enter < Wl-enter < R2-enter < R1-leave
D r2join < wljoin

Il R: Concurrency for Readers
GX(R1-enter, R2-enter, W*-enter) & R2-enter < Rl-leave
D R2-join < Rl-leave

XexY: X busy excludes Y busy
X-join < Y-join D X-leave < Y-leave

XpoY: X not by-passed by Y
X-enter < Y-enter D Xexit < Yexit

GS(X): Guaranteed service for X
@Xx-enter D @Xexit




! An abbreviation for each specification is given prior to cach clause. The Wpri
; ' and Rpri clauses specify writer's and reader’s priority propertics. ‘The (NWPRI) and
(NRPRI) clauses specify alternate versions of these properties to be proved for the
NWPRI and NRPRI serializers (to be shown below). The XexY clause actually denotes
three clauses: RexW, WexR, and WlexW2, where appropriate substitutions apply. The

XpoY clause also denotes three clauses, with the same substitutions.
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Figure 6 presents the code, in abbreviated form, for each of the seven

readers-writers serializers tested. The create operations and headers have been omitted,
as is the trailing code after any join. The use of crowd$empty and queueSempty is
implicit where empty is used. There is one FIFO serializer, two readers priority
scrializers  (RPRI & NRPRI), three writers priority scrializers (WPRI],
WPRI2 & NWPRI), and one serializer that allows starvation (STARVE). Note that the
priority specifications for RPR1 and NRPRI differ, and that there are also two distinct

writers priority specifications.

The various serializers above were developed at different times. In particular,
NRPRI and NWPRI were written after ASP had become relatively reliable. We
originally attempted to prove the Rpri specification clause for the NRPRI scrializer.
The attempt 'vas made much more difficult by a preconception (due to a faulty
informal proof) that the clause could be proved. After much effort to determine the
cause of the fault in the program, we finally noticed that the program was correct: not
only was the clause not satisfied, but the intermediate steps ollowed by ASP provided a
counterexample, It was this example more than any other that convineed us of the

worth of automatic verification aids.

The modified writers priority  specification came about as o test of the
speculation that NWPRI satisfied a priority clause that was symmetric to NWPRI, since
the serializers were (roughly) symmetric. The unmodified writers priority clause is also

satislicd by the NWPRI serializer.
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Figure 6. Code for test serializers

Name

FIFO

RPRI

WPRI1

WPRI2

STARVE

NRPR1

NWPRI

Oper Code
R enqueue
L] enqueue
R enqueue
W enqueue
enqueue
R enqueue
enqueue
W enqueue
R enqueue
enqueue
W enqueue
R enqueue
w enqueue
R enqueue
W enqueue
enqueue
R enqueue
enqueue
W enqueue

xq
xq

rq
wq

rq
wq
wq

wq
wq

wq

xq
xq
xq

xq
xq
xq

untii
until

until
until
until

until
until
until

until
until
until

until
until

until
until
until

until
until
until

empty(wc);: join rc
empty(wc)&empty(rc):

empty(wc): join rc¢
empty(rq)
empty(wc)&empty(rc);

empty(wq)|empty(rc)
empty(wc): join rc
empty(rc)&empty(wc):

empty(rc)
empty(wc)&empty(rq);
empty(rc)&empty(wc):

empty(wc): join rc
empty(wc)&empty(rc);

empty(wc): join rc
empty(wc)&empty(rc)
empty(wc)&empty(rc);

empty(wc);
empty{wc): join rc¢
empty(wc)&empty(rc);

join

join

join

join

join

join

join

join

wC

wC

wC

rc

wC

wC

wC

wC

‘The results in Figure 7 were obtained on 23 August 1979,

The times given are




Figure 7. CPU times for ASP tests

Name Time WexR WexW RexW RpoW WpoR WpoW Wpri Rpri || R GS(R) GS(W)

FIFO 21 T T T T T T ¢ F T T T

RPRI 35 T T T T ? T F T T T T

f WPRI1 47 T T ! ? T T T F ? T T

‘ WPRI2 67 T T T ? T T T F ? T ¥
STARVE 24 T T T ? ? T F ? T ? ?

NRPRI 36 T T T T ? T f T T T T

NWPRI 30 T T 1 ? T T T F T T T

Time is given in CPU seconds.
T indicates a proved clause, F indicates a disproved clause.
? indicates a clause not proved or disproved.

CPU scconds for running all of the tests shown.” The test cases are explained in detal
g P

at the bottom of the figure. Each column after the Time column represents a different
test, given by a specification clause. A 'I' represents a proven specification clause. An F
represents a specification clause proven to be always false. A 7 represents a specification

that could not proven true or false. In the serializers represented in the table below

there were no cases where the program was not capable enough to prove or disprove a
clause that was always true or false, In genceral, if the program can not prove or
¥ disprove a result, it is cither due 1o a clause that is true for some histories and false for

others, or it is due o a weakness in the verification methodology, and ASP will be

| 17. These tests were performed on 23 August 1979, using a Decsystem-=206010, ASP occupies about HOK
{ Jo-bit words of memory, of which about 600K words are duc 1o the CHU support system. No apprectable
; paging activity took place.




unable to distinguish the two.

6.10 Summary of methods used

This section provides a concise summary of the methods we have used in ASP.

3

rE In this summary we follow the order of steps used in ASP, rather than precisely ,
‘ following the order of presentation for this chapter. |
i

* Static analysis is performed once for any given scrializer code to

determine initial clauses that are derivable solely from the node graphs
4 for the serializer operations. The remainder of the steps are performed
for any given specification clause.

* Representations are introduced for the transactions mentioned in the
specification clause.

* For any specification clause of the form P D Q, the clause P is asserted,
and we attempt to derive Q through use of the insertion rules, which are
the rules Transitivity, Event before PX, Event after PX, Event before GX,
Event after GX, and Event from FIFO. If these rules are not sufficient to
prove Q, further methods must be used.

* The Event from ready queue ride, which reflects the priority of service
given 10 internal gueues over the external queue, is applied where
feasible. This i1s known as "checking for ready queues.” ‘This rule may
result in the invention of anonymous transactions, which are essential to
the proof by contradiction that the preconditions for the rule are met.
Anonymous transactions may also be used in the EVIE rule, which is
subsidiary to the checking for ready queues.

* When the clause Q is stll not proved, and the order of certain enter
events is not known, although the events are known to occur, ASP tries all
permutations of such cevents. I Q can be proven for every such
permutation, then 1P D Q has been proved.

v
I
4
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,_ * Proof of guaranteed service is performed by assuming that a transaction is

) blocked in a queue, then proving that a ready queue must result at some
"quict point.” Although this method is limited, it can be proven to be
correct, and works for a variety of cases.




o

.

7. Interaction of Serializers

In previous chapters, we introduced the serializer construct, presented a
specification language for serializers, and demonstrated some verification techniques.
Our discussion has been limited to single instances of simple serializers., Yet if we are to

reach our objective of modularity, we must examine how serializers interact.

In this chapter we present an application of serializers that incorporates the
use of multiple secrializers. We are especially concerned that serializer use can be
nested, so that the techniques for modular decomposition of programs in a single

process domain can be applied to a multiple process domain.

The example we have chosen is the use of serializers to control concurrent
access to a simple file system. For this example we will assume that objects in primary
memory can be shared by several processes running on a single processor. This choice
is made to keep the example simple enough to be tractable, since presenting a

distributed version of a filing system involves issues well beyond the scope of this thesis.

We start this chapter with a presentation of the simple file system, including a
discussion of the abstractions involved. We then show two of the serializers used to
control concurrent access to the file system, and show how the specifications are similar
to the readers priority variant of the readers-writers problem. Further sections concern
methods for introducing seriatizers for abstractions that were written for single process

environments, and a discussion of higher-level transactions.
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7.1 The file system

The structure of the file system is based on directories and files. A directory is
a map from names (expressed by strings) to entries, which are either files or directories.
If directory Y is named in directory X, then Y is a child directory of X, and X is the
parent dircctory of Y. There is a single directory, called the root directory, that has no
parent directory. Files and child directories may be added to or deleted from
directories. A simple provision is made for iterating over the names of a directory. It is
possible to get the number of entrics in a dircctory, and to determine which directory (if

any) is the parent of a given directory. For most operations, a directory must be open

for the user to perform those operations. Opening a directory is accomplished by the

directory3open_dir operation. The dircctory structure is acyclic.

A file is an array of pages, where a page is some fixed fength unit of data.
& Pages on primary memory may be read from or written to any existing page in a file,
Pages may be added to or removed from the end of a file. A file may be named by only
e onc directory. 1t is possible to get the number of pages in a file, and to determine which
P directory names the file. As with directories, a file must be open for the user (o perform
N most operations. A file opened by directory§open_private can only be accessed by a
single process, while a file opened by directory$open_public can be accessed by any
. number of processes (although a practical system might impose some reasonable limit).

A file is closed by the file$close operation.
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At this point, some additional explanation of the open and close operations is
in order. First, we have made the open operations work on directories, since directories
are the logical means for initially accessing files and child directorics. We have made
the close operation work only on the object that the open provides, which prevents
users from closing a file (or directory) except when they have acquired that file or
directory object through an open operation. Second, we have two different kinds of
open operation on files: open_public, for simultaneous access among several processes
(or uscrs), and open_private, for sole access. We can associate an open count with cach
file or directory object. This count is increased for every open operation, and decreased
by every close operation. The directory$open_private operation will only succeed when
the count is zero, and upon successful completion, prevents any increase in the count.
The directory$open_dir operation opens a child directory such that multiple processes

can access it concurrently.

In presenting the file system example we will concentrate on showing the
interface of the file and dircctory data abstractions and the code for the file and
directory serializers. It will not be necessary to show the implementation of the file and

dircctory data abstractions, although we will discuss some ol the details as necessary.

Figures 8 and 9 present the interface specifications for the directory and file
clusters. As a first approximation, these are the same interface specifications that are
used for the corresponding directory and file scrializers.  Each operation interface
names the operation, the types of the arguments, the types of the returned objects, and

the types of exceptions that can be signalled. We include some comments that indicate
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Figure 8. File interface

A file may be described as an array of pages that exists on remote
storage. It can be randomly accessed, and can be extended or retracted
at one end. An open file can only be obtained through use of a directory
open_private or open_public operation. No operations can be performed on
a closed file except for is_open. The following file operations are
available to the user (others will be discussed later in the chapter):

get_parent (file) returns (directory) signals (file_closed)
Get parent directory of file if file is open, otherwise signal
file_closed.

get_name (file) returns (string) signals (file_closed)
Get name of file as a string if file is open, otherwise signal
file_closed.

get_size (file) returns (int) signals (file_closed)
Get onumber of pages in the file if it 1is open, otherwise signal
file_closed.

is_open (file) returns (bool)
Return true if file is open, false if it is not.

read_page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given location in the file i.to
the given page in primary memory, provided that the file is open.
Signal bounds if the location is invalid (less than 0, greater than
or equal to the size). Signal file_closed if the file is closed.

write page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given page in primary memory to
the given 1location in the file. Signal bounds if the 1location is
invalid, file_closed if the file is closed.

close (file) signals (file_closed)
Close file if it is open, otherwise signal file _closed.

add page (file, page) signals (file closed, no_room)
Add a page to end of file, signalling if the file is closed or there
is insufficient room to complete.

rem_page (file) signals (file_closed, empty)
Remove a page from the end of the file, signalling if the file is
closed or the file has no pages.




for concurrent access, there are the following classes of operations:

Info: can overlap with any but sole access
Read: can overlap with read or info access
Write: can overlap with info access

Sole: can not overlap

The operations in each class are:

Info: get_parent, get_name, get_size, is_open
Read: read_page
Write: write_page

Sole: close, add_page, rem_page




Figure 9. Directory interface

A directory functions as a symbol table of entries, where each entry is
either a file or another directory. Entries can be created, deleted or
opened using the directory. The following operations are publicly
available:

root () returns (directory)
Get root directory, which is always open (this operation does not
require possession}).

get_parent (directory) returns (directory) signails (none, dir_closed)
Get parent directory, signalling none if the given directory is the
root directory, and dir_closed if the given directory is closed.

get_size (directory) returns (int) signals (dir_closed)
Get wnumber of entries in the given directory, signalling if the
directory is closed.

get_name (directory) returns (string) signals (dir_closed)
Get name of the given directory, signalling if the directory is
closed.

is_open (directory) returns (bool)
Return true if the given directory is open, false if it is not.

info (directory, string) returns (bool, int, bool)
signals (none, dir_closed)
Return information about the named entry: a boolean indicating the
kind of entry (true if entry is a file, false if not), the size (in
pages if a file, number of entries if a directory), and a boolean
indicating whether the entry is open. Signal appropriate errors if
they occur.

next (directory, string) returns (string) signals (none, dir_closed)
Get next entry name after named entry, using string ordering.

open_private (directory, string) returns (file)
signals (none, opened, dir_closed)
Open named file in given directory for sole wuse, signalling
appropriate errors if they occur.
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open_public (directory, string) returns (file)
signals (none, locked, dir_closed)
Open named file in given directory for shared use, signalling
appropriate errors if they occur (locked is signalled if entry is
open for sole use).

; | open_dir (directory, string) returns (directory)

, signals (none, dir_closed)

: Open named child directory in given directory, signalling appropriate
errors if they occur,

close (directory) signals (dir_closed, open_entries, root) !
Close the given directory, signalling if it is the root, or it is
already closed, or open entries exist.

add_dir (directory, string)
signals (no_room, duplicate, bad_name, dir_closed)
Add new (empty) child directory entry with given name. Signal if
there is insufficient room, an existing file or directory of the same
name, a bad directory name given, or the directory is closed.

add_file (directory, string)
signals (no_room, duplicate, bad_name, dir_closed)
Add new (empty) file entry to directory. Signal if there is
insufficient room, an existing file or directory of the same name, a
bad file name given, or the directory is closed.

delete (directory, string) signals (none, opened, dir_closed)
Delete named entry in given directory, signalling appropriate errors,
If entry is a directory, all of its entries are deleted as well.

There are four classes of operations requiring possession:

- Fixed info: can overlap with any but sole access

3 Variable info: can overlap with variable or fixed info access
3 Opening: can overlap with fixed info access
23 Sole: can not overlap

! The operations in each class are:

- Fixed info: get _parent, get_name, is_open
Variable info: get_size, info, next
o Opening: open_private, open_public, open_dir
'3 Sole: close, add_dir, add_file, delete,
i
i
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the intended effects of the operation.  After the operations have been described, we
divide the operations into classes based on which opcerations may overlap in execution

with which other operations (when executed on the same serializer object).

Onc¢ way to design a system that involves concurrency is to design it for a
single-process system first, then add multiple processes for portions of tasks that can be
performed concurrently, and add scrializers to control access to shared objects. In the
fiic system example, however, we have assumed that the file system would be accessed
by multiple processes. This assumption has influenced the choice of operations,
especially in providing for opening and closing of files. Even so, the single-process
model of design is uscful. Concurrent execution of operations is only permitted where
the effects on the state of the files are the same as some serial execution of operations
where concur-ent exccution is prohibited. It may not be possible to obtain the
maximum concurrency in this fashion, since certain operations could be allowed to
execute concurrently in part. But increased concurrency is purchased at the cost of

increased complexity.

One simplifying assumption has been made regarding file objects that may
appear to be unrealistic. That is, a lile on secondary memory has at most one lile object
in primary memory controlling access (this is also true for directories). Unfortunately,
this alfows a user to open a file once 10 obtain the controlling object, then close the file
several times, thereby completely closing the file to access by other processes. To
remedy this, in a real system it would be desirable to have a sccond level of indirection

for files such that every successful execution of an open_public operation returned a
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unique controlling file object. 'The additional level of file object would be used to
create a separate file object for each open_public operation, such that the file abstraction
presented to the user would only allow a file object to be closed once. A full
presentation of both levels of file has no advantage over a presentation of a single level,
so we only discuss the system_file version of files, which is supported by the file cluster

and its associated serializer.

7.2 File and directory serializers

Figures 10 and 11 on the following pages present the directory and file
serializers. Note that we have added several operations that are "hidden" to the
"normal” user. We would expect access to these operations to be regulated through
some library mechanism, such that a normal user would see a subset of the interface of
an abstraction, while a "privileged” user would be allowed to access more of that
interface. In some cases, and in particular for this file system, access to privileged
operations would be restricted to only allowing use by implementations of particular

abstractions, rather than allowing access based on the identity of the person using the

systcm.18

18. Such protection could also be provided o some extent by establishing i black structure for clusters
and serializers. We have chosen o retain CLUs approach to modules, and assume that protection is
accomplished by other means.
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Figure 10. File serializer

file = serializer is

% The following operations are publically available.
' get_parent, % get parent directory

get_name, % get name of file
, get_size, % get # of pages in file
i is_open, % test open-ness of file

read_page, % read a page

write_page, % write a page

close, % close file

add_page, % add a page to end of file
rem_page, % remove a page from end of file

% Note: delete can only be called from _directory$delete
delete, % delete the contents of a file

% The wrap operation can only be used by the _file cluster
% to turn a _file object into a file serializer object.
b wrap

% The operations with Cvl arguments can be split into four
% classes, depending on which operations can overlap in
% execution with which other operations.

% - Class - - Overlap -

% Info: Info, Read, Write

% Read: Info, Read

% MWrite: Info

% Sole: -

% - Class - - Members -
X % Info: get_parent, get_name, get_size, is_open
- ‘ % Read: read_page
T % Write: write_page
! % Sole: close, add_page, rem page, delete
. rep = struct{slow_q, fast_q: queue,
J sole_c, write_c, read_c, info_c: crowd,
' f: file]

wrap = proc (_f: _file) returns (cvt)
return (rep$(f: _f, fast_q, slow_q: queueScreate(),
i sole_c, info_c, read_c, write_c: crowd$create()})

{ end wrap

‘ get_parent = proc (f: cvt) returns (directory)

l signals (file_closed)

- enqueue f.fast_q until crowdSempty(f.sole_c)
[ join f.info_c
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return (_file$get_parent(f.f)) resignal file_closed
end
end get_parent

get _name = proc (f: cvt) returns (string)
signals (file_closed)
enqueue f.fast_q until crowdSempty(f.sole_c)
join f.info_c
return (f.f.name) resignal file_closed
end
end get_name

get_size = proc (f: cvt) returns (int)
signals (file_closed)
enqueue f.fast_q until crowdSempty(f.sole_c)
join f.info_c
return (f.f.size) resignal file_closed
end
end get_size

is_open = proc (f: cvt) returns (bool)
enqueue f.fast_q until crowdSempty(f.sole_c)
join f.info_c
return (_file$is_open(f.f))
end
end is_open

read_page = proc (f: cvt, index: int, p: page)
signals (file_closed, bounds)
enqueue f.fast_q until crowdSempty(f.sole_c)
& crowdSempty(f.write_c)
join f.read_c
_file$Sread(f.f, index, page) resignal file_closed, bounds
end
end read_page

write_page = proc (f: cvt, index: int, p: page)
signals (file_closed, bounds)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowdSempty(f.sole_c)
& crowdSempty(f.read_c) & crowdSempty(f.write_c)
join f . write_c
_fiteSwrite(f.f, index, p) resignal file_closed, bounds
end
end write_page

close = proc (f: cvt) signals (file_closed)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowdSempty(f.sole_c)
& crowdSempty(f.info_c) & crowdSempty(f.read_c)
& crowdSempty(f.write_c)
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join f.sole_c
_file$close(f.f) resignal file_closed
end

end close

add_page = proc (f: cvt, p: page)
signals (file_closed, no_room)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowd$empty(f.sole_c)
& crowd$empty(f.info_c) & crowd$empty(f.read_c)
& crowdSempty(f.write_c)
. join f.sole_c
' _file$add_page(f.f, p) resignal file_closed, no_room
end ﬁ
end add_page

rem_page = proc (f: cvt)
signals (file_closed, no_room)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowd$empty(f.sole_c)
& crowd$empty(f.info_c) & crowd$Sempty(f.read_c)
& crowd$empty(f.write_c)
join f.sole_c
_file$rem_page(f.f, p) resignal file_closed, no_room
end
end rem_page

% Note: called by _dir$delete

delete = proc (f: cvt)
signals (file_open, file_deleted)
enqueue f.slow_q until queue$empty(f.fast_q)
enqueue f.fast_q until crowd$empty(f.sole_c)
& crowd$empty(f.info_c) & crowd$empty(f.read_c)
& crowdS$empty(f.write_c)
join f.sole_c
% Note: use hidden file$delete operation
% to delete contents of file. _fileddelete is
% only used by file$delete.
_fileSdelete(f.f, p) resignal file_open, file_deleted
end
end delete

end file




Figure 1. Directory serializer

directory = serializer is

root, % get root directory
get_parent, % get parent directory
l get name, % get name of directory
- is_open, % test open-ness of directory
- get_size, % get # of entries
- info, % return info about rnamed entry
1 next, % get next entry name after named entry

open_private, % open file for sole use
open_public, % open file for sharing

] ! open_dir, % open sub-directory

' close, % close this directory 1
add_dir, % add new sub-directory entry
add_file, % add new file entry
delete, % delete named entry

% The wrap operation can only be used by the directory cluster
% to turn a _directory object into a directory serializer object.
wrap

% The operations can be split into six classes, depending on
% which operations can overlap in execution with which other
% operations.

% - Class - - Overlap -

% Root: Root, Fixed, Variable, Opening, Sole

% Fixed info: Root, Fixed. Variable, Opening

% Variable info: Root, Fixed, Variable

% Opening: Root, Fixed

% Sole: Root

4 - Class - - Members -

% Root: root

% Fixed info: get_parent, get_name, is_open, get_size
% Variable info: info, next

% Opening: open_private, open public, open_dir
% Sole: close, add_dir, add_file, delete

rep = struct{slow q, fast q: queue,
sole_c, open _c, var_c, fixed c: crowd,
dir: _directory)

‘ % The wrap procedure is used by the _directory cluster

r ! % to turn a _directory object into a directory serializer
P % object. This operation can only be used by the

. % _directory$root and _directory$add_dir operations.

wrap = proc (d: _directory) returns (cvt)
return (repScreate{dir: _d,
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slow_q, fast_q: queueScreate(),
sole_c, open_c, var_c, fix_c:
* crowd$create()})
end wrap

root = proc () returns (directory)
% note: _directory$root uses the wrap operation
return (_directory$root())
end root

get_parent = proc (d: cvt) returns (directory)
signals (none, dir_closed)
enqueue d.fast_q until crowd$Sempty(d.sole_c)
join d.fix_c
return (_directory$Sget_parent(d.dir))
resignal none, dir_closed

MmN i e e

end
end get_parent

get_name = proc (d: cvt) returns (string)
signals (dir_closed)
enqueue d.fast_q until crowdSempty(d.sole_c) ;
join d.fixed_gq
return (_directory$get_name(d.dir)) resignal dir_closed :
end
end get_name

is_open = proc (d: cvt) returns (bool) 1
enqueue d.fast_q until crowdSempty(d.sole_c) i
join d.fixed_q :

return (_directory$is_closed(d.dir)) 1
end i
end is_open

get_size = proc (d: cvt) returns (int) i
) signals (dir_closed) i
e enqueue d.fast_q until crowdSempty(d.sole_c) '
join d.var_c
return (_directory$get_size(d.dir)) resignal dir_closed
end
end get_size

info = proc (d: cvt, name: string) |
returns (bool, int, bool) signals (none, dir_closed) .
enqueue d.fast q until crowd$Sempty(d.sole_c)
& crowd$empty(d.open_c)
join d.var_c

L file ness: bool, size: int, open_ness: bool
! := directory$info(d.dir) resignal dir_closed, none
) return (file_ness, size, open_ness)
end
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end info

next = proc (d: cvt, name: string) returns (string)

signals (none, dir_closed)

enqueue d.fast _q until crowdSempty(d.sole_c)
& crowdSempty(d.open_c)

join d.var_c
return (_directory$get_next(d.dir))

resignal dir_closed, none

end

end next

open_private = proc (d: cvt, name: string) returns (file)

signals (none, opened, dir_closed)

enqueue d.slow_gq until queueSempty(d.fast_q)

enqueue d.fast_q until crowdSempty(d.sole_c)
& crowd$empty(d.open_c)

join d.open_c
return (_directory$open_private(d.dir, name))

resignal dir_closed, none, locked

end

end open_private

open_public = proc (d: cvt, name: string) returns (file)

signals (none, locked, dir_closed)

enqueue d.slow_q until queueSempty(d.fast_q)

enqueue d.fast_q until crowdSempt,y(d.sole_c)
& crowdSempty(d.open_c)

join d.open_c
return (_directory$open_public(d.dir, name))

resigna) dir_closed, none, locked

end

end open_public

open_dir = proc (d: cvt, name: string) returns (directory)
signals (none, dir_closed)
enqueue d.slow_q until queueSempty(d.fast_q)
enqueue d.fast _q unti) crowdSempty(d.sole_c)
& crowd$Sempty(d.open_c)
join d.open_c
return (_directory$open_dir(d.dir, name))
resignal dir_closed, none
end
end open_dir

close = proc (d: cvt)
signals (dir_closed, open_entries)
enqueue d.slow_q until queueSempty(d.fast_q)
enqueue d.fast _q until crowdSempty(d.sole_c)
& crowdSempty(d.var _c) & crowd$Sempty(d.fix_c)
& crowdSempty(d.open_c)
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join d.sole_c
_directory$close(d.dir) resigna) dir_closed, open_entries
end

end close

add_dir = proc (d: cvt, name: string)
signals (no_room, duplicate, bad_name, dir_closed)
% note: _directory$add_dir uses the wrap operation ;
enqueue d.slow _q until queueSempty(d.fast_q) ;
enqueue d.fast_q until crowd$empty(d.sole_c)
& crowdSempty(d.var c) & crowd$empty(d.open_c)
‘ join d.sole_c
L _directory$add_dir(d.dir)
8 resignal no_room, duplicate, bad_name, dir_closed
] end
end add_dir

add_file = proc (d: cvt, name: string)
signals (no_room, duplicate, bad_name, dir_closed)
enqueue d.slow_q until queueS$empty(d.fast_q)
enqueue d.fast _q until crowd$empty(d.sole_c)
| & crowdSempty(d.var _c) & crowd$empty(d.open_c)
join d.sole_c
_directory$add_file(d.dir)
resignal no_room, duplicate, bad_name, dir_closed
end
end add_file

delete = proc (d: cvt, name: string)
signals (none, opened, dir_closed)
enqueue d.slow _q until queuelempty(d.fast_q)
enqueue d.fast_q until crowd$empty(d.sole_c)
& crowd$Sempty(d.var_c) & crowd$empty(d.fix_c)
& crowd$empty(d.open_c)
join d.sole_c
_directory$delete(d.dir) resignal dir_closed, open_entries
end
end delete ]

end directory
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To distinguish between the data abstractions and the serializer abstractions of
the same interface, we will use the names directory and file for the serializer
abstractions, and _directory and _file for the data abstractions. The user in a multiple
process system would only be allowed to access the operations of the serializer

abstractions, which would utilize the operations of the data abstractions.

In the above two serializers, there are classes of operations that can be strictly
ordered on the basis of the execution of any operation from one class excluding the
execution of any operation from another class. The order is from most permissive to
least permissive, with operations that return information generally being the most
permissive, since they can be executed concurrently. This ordering allows us to
construct serializers that follow the general plan of the readers-writers problem. If an
operation can =xecute concurrently with another invocation of the same operation, it is
considered to be a reader; otherwise it is a writer. In the above scerializers, we have
adopted a readers priority approach, with the information gathering operations having
higher priority. 1t would be equally correct to adopt a FIFO approach or a writers

priority approach, but different performance would result.

The restrictions on simple serializers must be relaxed slightly to allow us to
write the file and dircctory serializers. ‘The most important addition is the exception
mechanism, which includes a signals clause in the operation interface and a resignal
clause at the end of any statement. This addition does not greatly add to the complexity

of our model, since we only use the exception mechanism in the same manner as the




return stutcment.lg

We retain the important limitation, which is to return or signal directly after

invoking the operation of the data abstraction. The other addition is to allow local

variables, which we use in directory$info to hold the results of an invocation that returns
multiple objects. The effect of this addition is also minor, since we immediately return

those results unchanged.

7.3 Specifications for file and directory serializers

The specifications for the file and directory serializers are similar to the

readers priority readers-writers problem. Therefore, we will only present illustrative

examples, rather than full specifications. One nuseful abbreviation is to use the first
letters of the operation classes, rather than the operations, to name transactions. This
gives us the following transaction names for file operation classes:

I:  an lnfo class transaction

R: aRead class transaction
W: a Write class transaction
.
[
3 S: aSole class transaction
v For dircctory operation classes, we can use the same specifications, except that the
;
‘ 19. In CLUL when an operation signals an exception. the invocation terminates, and the immediate

caller is given the opportunity to handle the exception. A common method of handling an exception is o
reflect it o yet another level via resignal. An invocation that signals an exception is not resumed. For
further details, see {1 iskov 79a).




transaction symbols have the following interpretation:

—
..

a Fixed Info class transaction

R: a Variable Info transaction

W: an Opening class transaction

S:  aSole class transaction

In the remainder of this section we use the class names of the file serializer (Info, Read,
Write, and Sole) with the understanding that the remarks also apply to the

corresponding directory classes.

The most important specifications are those that relate to the exclusion of
certain operations by others. If these specifications are violated we obtain invalid result

values. The complete exclusion specifications are:

I-join < S-join D I-leave € S-join

R-join < W-join D R-leave < W-join
R-join < S-join D R-leave < S-join

W-join < R-join D W-lcave < R-join
Wl-join < W2-join D Wl-leave < W2-join
W-join < §S-join D W-lcave € S-join

S-join < I-join D S-leave < I-join

S-join < R-join 2 S-leave < R-join

S-join < W-join D S-leave < W-join
S1-join < 82-join D Sl-leave < S2-join

A number of priority specifications might be proposed. ‘The readers priority

specification used in Chapter 6 is:
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Wl-enter < W2-enter € R1-enter < Wl-join D Rl-join < W2-join

The same specification clause holds for the file and directory serializers. To give more

complete priority specifications, we introduce two new classes of transactions: SW,
which contains all Sole and Write transactions; and IR, which contains all Info and

Read transactions. Using these ncw classes, the priority specification becomes:

SWl-enter < SW2-enter < IR I-enter < SW1-join
D IR 1-join < SW2-join

The following spccification specifies concurrency for Read transactions, and is

a slight adaptation of the concurrency specification in Chapter 6:

R1-enter < R2-enter < R1-leave
& GX(R1-enter, R2-enter, W*-enter)
& GX(R l-enter, R2-enter, S*-enter)
D R2-join < R1-leave

The difference lies in the addition of the exclusion of enter events from the Sole class of
transactions, The above specification can also be proven for Read and Info transactions
by substituting R for R1 and I for R2 to get one clause, and | for R1 and R for R2 o get
the other. Finally, the following specification indicates where a Wiite transaction st
overlap with an Info transaction:

W-enter < I-enter < W-leave

& GX(W-enter, J-enter, S*-enter) & GX(W-enter, [-enter, W*-enter)
2 l-join < W-leave
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The service specifications are as simple as for the readers-writers problem:
cach request must receive a reply. The service specifications are:
@I-enter D @!-exit
@R-enter D @R-exit

@W-enter D @W-exit
@S-enter O @S-exit

We have shown that the specifications for the file and directory serializers are
similar to the readers priority example used in Chapter 6. This may not be surprising,
since the problems and solutions are similar, but the lack of such a surprise is precisely

one of our goals.

One point about the specifications that we have discovered through the above
example is the usefulness of dividing the operations into classes, and providing the
specifications for the classcs rather than for the single operations. Using class-oriented
specifications promises to provide more concise spccifications while retaining the

precision we desire.

The verification techniques we discussed in Chapter § and Chapter 6 remain
valid for both the file and dircctory scrializers. The only additions we would make
would be to introduce classes of operations into the verification as we have for the
specification. When two  serializer operations are sufficicntly similar it should be
possible to use the proof of one in the proof of the other, as is the case for file
operations in the same specification class. We will not propose techniques for

determining how much similarity is sulficient, although we regard the issue as being
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worthy of further research.

7.4 Guidelines for addition of serializers

In a system where data abstractions are used, we believe it likely that some
library of abstractions will become useful, and eventually indispensable. Further, we
consider it likely that many of these abstractions will be initially designed for a
single-process environment.?® If we are to use these data abstractions in a
multiple-process environment, and the corresponding objects are to be shared between
processes, we can either rework the abstractions for that purpose, or we can provide a
mechanism for controlling concurrent access that reguires no change to the data
abstractions. The serializer construct was designed along the latter lines. This section

discusses how that approach could be made largely automatic.

As a first approximation, we assume that cach operation has exclusive use of
the resource, then introduce serializer abstractions as replacements for data abstractions
in order to permit concurrency while prohibiting conflict and deadlock. This is a simple
strategy, and is not intended to cover all situations, although we believe it to be an

important first step.

When a serializer abstraction is substituted for a data abstraction in a program,

yet the data abstraction is retained as part of the implementation of the serializer

20, Evenif for no other reason than programmer inertia,
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abstraction, we may be faced with problems that result from having two abstractions in
the place of one. [f we wish to integrate a newly serialized abstraction into a system that
has been created with the old data abstraction, we need a linking mechanism that will
allow the operations of the serializer abstraction to be substituted for opcrations of the
original abstraction in old user programs. If the interface to the serializer abstraction is

compatible with the interface of the original data abstraction, and both abstractions

have isolated represcntaliohs, then this linkage mechanism allows graceful upgrading of

programs that use the original data abstraction.

f However, the representation of the original data abstraction /s exposed to the
operations of that data abstraction. Here the splitting of the original abstraction is more
difficult. In most cases, we expect that an automatic "rewrite” of the data abstraction
would be easi'y made by a program. If we call the type introduced by the data
abstraction DA, and the type introduced by the serializer abstraction SA, then the

following rules allow such an automatic rewrite:

A avihd

* Occurrences of DA in the cluster for DA are changed to SA, including
occurrences of DA in the interface of operations of DA, provided that
they do not result from uses of cvt. Thus, a component of the
representation of DA that was an object of type DA would become an
object of type SA. In the file system example, this would be true for the
case of the get_parent operation of the directory abstraction, since the
get_parent operation of _directory (IDA) must return a directory object
(SA), and not a _directory object (DA). This is also true of the
open_private, open_public, and open_dir operations,

VIRs

* Operations of DA that have evt appearing in their headers must have DA
appear in the interface specifications where a corresponding evt appeirs
in the operation header. "These are operations that explicitly aceess the
representation of DA, so a conversion of DA to SA is not reasonable.
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*The up and down operations convert between the representation and the
DA type, not the SA type. This is consistent with the treatmient of cvt.

! * We introduce an operation, called wrap, that takes a DA object and
f returns a newly created SA object that encapsulates the DA object. The
1 wrap operation is used to create a new SA object in operations that create
5 new DA objects and need (duc to our first transaformation) to use SA

objects.

If the above translation results in a type error then the automatic rewrite is not

performed, and a manual rewrite must be performed. Such a case could arise from an

P . ..
} , operation that accepted an argument of type DA, then explicitly used down to attempt
!

to access the representation. The transformation would have changed the use of DA

into SA, but the down operation would only work for an object of type DA, and fails

(due to static type checking) with an SA object.

In addition, a data abstraction may have to be rewritten if it supports cyclic
objects. [f operations of DA call operations of SA, which in turn call operations of DA,

a cyclic data structure can cause deadlock by having access to an object being blocked

by an incomplete access to the same object by the same process. Access to cyclic objects

- is discussed later in this chapter.

| There are two reasons to believe that a rewrite of the original data abstraction
will not be a difficult process even if it cannot be done aumtomatically. First, the amount
of detail to be changed is likely 10 be small. After all, the intent of the data abstraction
has not changed. There is only the additional distinction between serializer abstraction

‘ and data abstraction, Sccond, we believe that it will be rare that any code except for the
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implementation of the scrializer and data abstractions will be allowed to use the data
abstraction. The intention of this transformation is to make the rest of the system use
the serializer abstraction. Therefore, the number of places to be changed is also likely

to be small.

In the file system example, there is a case where the use of the automatic
splitting of types may provide serializers where none are needed. In particular, if the
directory information is implemented using a file, then the serializer for the directory
may provide sufficicnt protection for the file object used to implement the directory. In
such a case, the transformation from DA to SA would provide an unnecessary level of
serializer. A rewrite of the _directory cluster would then be desirable to promote
efficiency. This efficiency argument actually works in favor of our separation of data
and serializer abstractions, since if they were inextricable, the optimization described

could not be performed.

The above rewrite process has been applied to the _file and _directory
scrializers. In  particular, the opcrations _dircctory$open_private  and
_directory$open_public now return file objects, which are supported by the file
serializer. Further, the operation _directory$open_dir returns a directory object, which
is supported by the directory scrializer. ‘The wrap operations shown in the file and
directory serializers are used to enclose a _file or _directory object in a file or directory
scrializer. ‘The wrap operations are used whenever a new _file or _directory object is

created.
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In any reasonable implementation of the _directory cluster there will be a list
of the open files and child directories for any _directory object. In this case, the
automatic rewrite we mentioned above informs us of a type conflict: the list of open

" files and directorics must be for the file and directory objects supported by the

serializers, and not the _file and _directory objects supported by the clusters.

7.5 Higher-level transactions

Suppose procedures P and Q use operations on a shared data object X of type
T. We have recommendcd that a serializer object should be introduced for X to ensure
that the operations of T performed on X do not interfere with cach other. However, the

user may intend that P and Q do not overlap. The serializer for object X does not

enforce this restriction. One solution is to introduce a further encapsulation of X in

' order to perform operations P and Q such that they do not overlap.

A difficulty with the introduction of further abstraction levels is that the

designer of a system may not know how the user will be using the system, and cannot
2 provide the appropriate abstractions tn advance. 'This inability to forecast is certainly

, present inour file system example, since the user may wish to have a process perform
g several operations on a file (or on several files) such that no other process will access the
| file (or files) while those operations arc being performed. The file system example

provides no solution (o this problem in general, although we can attack certain special

i COSCS.
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A limited solution to the above problem can be achieved by adding a new
operation, update, 1o the file scrializer. The text of this operation is shown in Figure 12,
The update operation performs a sequence of read operations on a file, then performs a
computation supplicd as a procedure by the user on data supplied by the user, then
performs a sequence of writes on the same file. In our simple solution, the entire
update operation is performed without allowing overlapping reads or writes on the file,
If more concurrency is desired, update operations that do not have overlapping sets of
pages can be permitted to proceed in parallel, providing that the underlying _file

abstraction will permit this. i
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Iigure 12. Update operation

The update operation is intended to perform a sequence of
reads, an arbitrary computation, and a sequence of writes,
The entire procedure should executed without overlapping
other write operations or other update operations. This
procedure resignals an error on reading or writing, or an
abort error from the arb procedure. An error that is
resignalled after the first write has been finished will
leave the writes only partially completed.

update = proc [dt: type]

(f: cvt, reads, writes: spair, arb: pt, data: dt)
signals (file_closed, bounds, abort)

pair = struct [pgnum: int, pg: page]
spair = sequence [pair]
pt = proctype (dt, spair, spair) signals (abort)

% wait for write access to resource to be 0K
enqueue f.slow _q until queuefempty (f.fast_q)
enqueue f.fast_q until crowd$empty (f.sole_c)
& crowd$empty (f.write_ c)
& crowd$empty (f.read_c)

% join the crowd to show that we are going to write
join f.write_c

% perform the reads into the given memory pages
% from the given file pages
for p: pair in spair$elements(reads) do
_file$read(f.f, p.pgnum, p.pg)
end

% perform the arbitrary computation
% (modifying the given memory pages)
arb(data, reads, writes)

% perform the writes from the given memory pages
% into the given file pages
for p: pair in spairSelements(writes) do
_fileSwrite(f.f, p.pgnum, p.pg)
end
end resignal file_closed, bounds, abort

end update
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8. Conclusions

In this thesis we have been concerned with verifiable control of concurrent
access to resources. In this pursuit we have presented a language construct for
controlling concurrent access, a definition of the semantics of this construct, a
specification language for describing varietics of concurrency control for instances of
the construct, methods to verify that instances of the construct satisfy their
specifications, a program for performing this verification automatically, and a

discussion of some of the interactions possible between instances of this construct.

In separating the control of concurrency from the data access, we have
attempted to apply this separation to the programming language, the semantic model,
the specifications, and the verification system. The objective has been to modularize
the construction and verification of programs involving concurrency. By this
modularization, the problems associated with construction and verification become
more tractable. The results of our research indicate that this modularity can be

achieved, at least for the simple serializers we have discussed.

In this chapter we discuss how extensions to serializers require extensions to
our verification technigues. Most of these extensions require significant  further

rescarch, ‘Then we present closing remarks to sum up the contributions of this thesis.
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8.1 Verification of serializer extensions

semantic model and verification methods. This is the area where further research is
most necessary and most difficult. Our success in verifying simple scrializers can be
largely attributed to the limitations we have imposed. We believe that further success in

verifying concurrency control lies in selective relaxation of these limitations.

8.1.1 Adding boolecan variables and boolean expressions

requires the following changes to the semantic model:

* The node graphs must be extended to handle declaration and assignment

*The semantic cquations must be extended to handle evaluation of

—

In this scction we briefly consider how extensions to serializers affect our

To add simple boolcan variables and boolcan expressions to serializers

of boolcan variables. These variables must further be distinguished as
cither local variables, which arc instantiated on each transaction; or
global variables, which are components of the serializer representation.

boolcan expressions. This will require examining finite historics for the
last assignment to any boolean variable. Onc of the most important
changes to evaluation is that evaluation must take place in the context of a
transaction, since expressions may involve local variables.

* There must be some indication of the initial state of a scrializer object.

This is casily accomplished by representing the serializer state as the
result of some initial assignments (o representation components,

N




To lustrate the kinds of serializers and verifications that are possible with the
addition of boolean variables, consider the case where we are limited to boolean
vartables as part of the representation, and the only legal boolean expressions are true,

false, and simple components of the representation. As an example, we present the

following abbreviated serializer:

xop = proc (x: cvt, ...)
enqueue x.ql until x.b & crowd$empty(x.c)

join x.¢: ...; end
x.b := false
end xop

2 yop = proc {(x: cvt, ...)
enqueue x.q2 until ~x.b & crowd$empty(x.c)
join x.c; ...; end
x.b := true
end yop

Suppose that x.b is initially trac. We would like to prove that the number of
executions of xop is equal to or one greater than the number of executions of yop. This

specification could be written as:

(# X-exit = #Y-exit) | (# X-exit = #Y-exit + 1)
Informally, suppose that the above specification is not satisfied, and that it is due to

#X-exit > £ Y-exit + 1. Then there must be two events X1-exit < X2-cxit that occur

without an intervening Y-exit. Note that the x.b is set to false after Xl.leave, and

remains false until after some Y-leave. If no such Y-leave event occurs, then the

guarantee remains false, and X2-dequeue cannot occur. ‘Therefore, there can be no

‘ such cvents. To prove that # Y-exit cannot exceed # X-exit, we note that the only way
that #Y-cxit could exceed # X-exit is for the initial cxit cvent to be some Y-exit,

However, we assumed that the variable x.b was initially true, which  prohibits
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Y-dequcue from occurring.

The addition of boolean variables provides additional information about the
past exccution of operations. As the above informal proof shows, the semantic model
can capture this information as well. Extending the verification rules to handle such

situations is feft as a topic for future research.

8.1.2 Conditionals

The addition of boolean variables and expressions is of limited usefulness if
the only test of a boolean expression remains limited to the guarantee on a queue.
Another extension that can be added at this point is conditional statcments, with the

form

il expression
then body_of statements
else body_of statements
end

The else part is optional. [n the semantic model we need to introduce a new kind of
node, the if node. ‘The if node tests the results of the boolean expression (we will
discuss a more gencral model for evaluation below), and conditionally executes the
appropriate body of statements based on the result. The next node after the last node of
cither the then body or the else body is the node that corresponds to the statement
dircctly following the il statement. By the introduction of conditionals, the

"node graph” has become a true directed graph.




e

e

Although the modelling of conditionals poses no severe difficulties, the
addition of conditionals complicates the specification language. Consider the following
operation (we have also relaxed our requirement for a strict correspondence between
serializer and resource operations):

xct = proc (x: cvt, d: data)
enqueue x.q until crowd$empty(x.c)
if data$cond(d)
then join x.c¢
resource$fast_xct(x.res, d)
end
else join x.c
resource$slow_xct(x.res, d)
end

end
end xct

What event does X-join denote? There are potentially two different events, and the

event to occur depends on the data presented to the operation.

The solution we recommend is simple: for every test in a conditional
statement, assume that the test evaluates to a particular boolean value (true or false). If
the specitication clause can be verified for every permutation of the conditional tests,
then it is verified for the operation. In the above example, we would effectively need to
verify two operations: one where data$cond(d) was true immediately after the enter

cvent, and one where data$cond(d) was false.
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8.1.3 Loops in scrializer operations

Just as conditional statements introduce ambiguity about which nodes can be
executed, iteration and recursion introduce ambiguity about how often a node is
executed. The doubt is significantly worse, however, since the number of possible

executions of a loop is not bounded.

When a point in a scrializer operation can be passed many times during the
execution of a transaction, an event is not just an execution of a node for that
transaction, but a particular execution of that node. We can adapt the method of
handling conditionals to handling loops by assuming particular numbers of iterations

for each loop. If the specifications can be shown to hold for any choice of such

numbers, then the specifications are verified for the operation as a whole, provided that
all of the loops terminate. Induction can be used by assuming that the specification 1
holds for some particular number N of executions around a loop, then showing that the ;
specification holds for N+ 1 executions (plus a basis proof for N = 0). In order to {!
prove service specifications, an additional proof that cach loop terminated would be i

necessary.




.‘ 8.1.4 Arbitrary expressions and invocations

The introduction of arbitrary expressions into serializers has the following

effects:

* The semantic model must include arbitrary types and values of those
types, including user-defined types.

oy

; * The semantic model must be provided with events to mark both the start
and the end of an invocation.

* The specification language must be merged with a larger specification
language. Values must be named and functions on those values defined.
Concurrency  specifications, data abstraction specifications, and
procedural specifications may be mutually interdependent.

* The serializer verification system must be joined to a more general

;_,14 verification system. While it is our hope that the two kinds of verification '
systems can be kept modular, we have no evidence at this time to support 'i
¢ this hope.

With arbitrary expressions and invocations, some of the verification

technigues we have described may be invalid for some situations, some of which are:

- * Some invocations may not always terminate. If we use such invocations,
| then we must be prepared to prove service where applicable. If we
cannot prove service, then we are faced with a new potential source of
lack of service: indefinite possession of the serializer object. In terms of
our current model we would be faced with a finite complete history (since
it would be possible for no further serializer events to occur) where a
transaction would be in possession at the end of the history. Since many
of our verification rules depend on no transaction being in possession at
the end of a finite complete history, and no crowds being occupied, our
technigues are not applicable where termination cannot be proved. ‘The

i
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problems of combining our techniques with proofs of termination for
invocations remain for future research.

*1If we allow side effects in the evaluation of guarantees cvaluation it
becomes necessary to introduce events to model the beginning of such
evaluation, and to indicate the order in which guarantee cvaluation is
performed.

* Recursive operations provide one more problem. When we assume that
an invocation uscd by a serializer terminates, and thereby prove service
for the serializer operation, such a proof must not be circular. If the
invocation termination depends on the service proof, then the service
proof is not valid unless one can prove that the level of recursion is
bounded.

All of the above issues are left for further research.

8.1.5 Priority queues

The monitor construct presented in [Hoare 74] permits the use of priority
queues, which obey a "first in, best out” discipline. A serializer example that makes use

of priority queues is presented in Appendix I11.

In using priority queues, we do not (usually) wish to allow the addition of
requests to a queue to indefinitely postpone the progress of carlier requests. For the
disk serializer we can prove that the request operation guarantees service since, when we

are serving onc queug, its size decreases with every fulfilled request, and we assume that

the resource operation terminates. ‘Thercfore, the queue being served must empty, the

dircction must change, and the other gquene becomes the served queuce. Another proof

of service can be based on never adding requests to a queue at a priority number less




—

ot

than or cqual to the lowest number request in the queuc.n We can still prove service
even if we allow a bounded number of requests to be added at a lower or equal number

g | priority.

8.2 Closing remarks

This thesis has presented a wide range of aspects of a single language
construct, including programming language design, formal specifications for
programming languages, and verification techniques. We were able to cope with such a i
wide range because we were interested in limited techniques for a limited construct, and

our design philosophy emphasizes minimal interference between constructs. We

believe that our results show that such an approach has merit.

In several places we have mentioned that it is possible to view serializer
operations either as procedures or as message handlers. This flexibility is made possible

through the design of the serializer construct, and through the use of a semantic model

L e

that is limited to describing scrializers. Even though details may change as scrializers
arc embedded in a procedure-oriented or a message-passing language, the basic

~. approach to proving scrializers should remain sound.

| 21. ‘This is the approach that Hoare takes in [Hoare 74].
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We have only attempted to verify automatically a number of variants of the
readers-writers problem. Partially due to this limitation we have been able to handle
several important specifications regarding concurrency control, Even though the
specification categories have been chosen for use with access to resources, properties
such as exclusion, priority, and termination are generally recognized as important in

dealing with concurrent programs,

We have demonstrated the feasibility of proving a form of termination that is
applicable to transactions. rather than programs or objects. This technique is especially
useful when resources (or objects in general) have unbounded lifetimes and the number

of active transactions (or processes) is unbounded.

Our approach to verification has not been oriented toward presenting either a
minimal or a complete set of axioms and inference rules. Rather, we have identified
some higher-level theorems, expressed as inference rules, that are useful in proving
serializers, and have justified these thcorems by direct appeal to the semantic model.
Should further examples identify other useful theorems, more justification through the
model is called for. While the study of the completeness of an axiom system is
intersting in its own right, it is rare for a verifier (cither automatic or manual) to appeal
to the axioms if more general and more powerful theorems are known. The test we
value most for such a sclection of theorems is their utility in verification, a test that our

theorems have passed.
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Appendix I - Bounded buffer serializer

» A bounded buffer is intended to smooth variations in processing speed
» ' between a producer and a consumer of items of information, and thereby afford more
| concurrency between the two processes.22 A bounded buffer is accessed by ger and put
operations, where the Nth get operation retrieves the information that the Nth put
operation deposited. A bounded buffer object is constructed by calling the create
operation with a positive number specifying the number of items of information to

buffer. The buffered information is transferred by copying the contents (via

item$move) from one item to another. We assume that this copying takes some

significant amount of time.2? Partial specifications for this problem appear in Chapter

4.

The bvunded_bufffer serializer given below uses only slight extensions over
serializers. We assume that performing a put operation on a full buffer causes an
exception to be signalled for the data abstraction (called bbuf'in this example), but that

the serializer operation simply pauscs until the buffer is not full. If several processes

perform get operations, there is no overlap between the operations, since a modification

to the buffer is made in the data abstraction, and the modifications made by two

DR I 3

invocations could conflict. A similar conflict arises for put operations.

-

- .

o
—

22, A solution to this problem using monitors appears in [Hoare 74). A verification of a similar monitor

appears in {Howard 76).
23. Although such copying is normally foreign to CLU, we have used copying in an attempt to remain
compagible to the monitor stitement of the problem.
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The combined_bounded_buffer serializer shown in Appendix |l combines the
function of the bounded_buffer serializer and the bbuf cluster. The interface remains
the same, but the implementation does not use the bbuf cluster. Besides the obvious
savings afforded by the elimination of operation calls from the serializer to the cluster,
there is additional concurrency possible because get operations are allowed to overlap
with other get operations, and put operations are allowed to overlap with other put

operations.

We have presented this problem as an illustration of how the modularity
provided by serializers allows such optimization without changing the interface that the
user sees. Further, any verification of programs that use the bounded buffer serializer

remain valid, provided that they are unaffected by the additional concurrency.
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% The bounded_buffer serializer protects the bbuf abstraction
% against damaging concurrent access. Get and Put operations

% may only overlap with get_size operations. A1l copying of

% item to item is done in the bbuf cluster,.

bounded_buffer = serializer is
create, get_size, get, put

rep = struct[res: bbuf, c: crowd, max: int,
9q9. pq: queue]

create = proc (n: int) returns (cvt) signals (bad_size)
return (rep${res: bbufScreate(n),
max: n,
¢: crowdScreate(),
9q. pq: queueScreate())})
resignal bad_size
end create

get_size = proc (x: cvt) returns (int)
return (x.res.size)
end get_size

get = proc (x: cvt, dst: item)
enqueue x.gq until crowdSempty(x.c) & x.res.size > 0
join x.c
bbufSget(x.res, dst)
end
end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.c) & x.res.size <= x.max

join x.c
bbuf$put(x.res, src)
end

end put

end bounded_buffer
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Appendix I - Combined bounded buffer serializer

% The combined bounded buffer permits get operations to overlap with
% other get operations, and put operations to overlap with other put
% operations, but get and put operations cannot overlap. Get_size
% operations can overliap with either get or put operations.

combined_bounded_buffer = serializer is
create, get_size, get, put

buf = array[item]

rep = struct[res: buf, gc,pc: crowd,
next, size, max: int,
sq. 99. pq: queue]

create = proc (n: int) returns (cvt) signals (bad_size)
if n < 1 then signal bad_size end
return (rep${res: buf$fill_copy(0, n, item$create()),
next: 1, size: 0, max: n,
gc, pc: crowdScreate(),
89. Pq. $q: queueScreate()})
end create

get_size = proc (x: cvt) returas (int;
return (x.size)
end get_size

get = proc (x: cvt, dst: item)

enqueue x.gq until x.size > 0 & crowdSempty(x.pc)

src: item := x.res[x.noxt]

x.size := x,size - 1

x.next := (x.next+l) // x.max % take increment mod N

join x.gc
item$move(dst, src) X copy data from src to dst
end

end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowdSempty(x.gc) & x.size <= x max
dst: item := x.res[(x.next+x.size) // x.max]}
x.size := x.size + 1
join x.pc
item$move(dst, src)
end
end put

end combined_bounded_buffer




Appendix 111 - Disk head scheduler

In [Hoare 74], the disk head scheduler problem is discussed for monitors.
Below we give a serializer solution to the problem, which uses the priority_queue type.
A priority_queue is a queue where the order of dequeue events is dependent on the
priority. We will assume that the lowest numerical value of the priority is served before

any others. Equal priorities are served FIFO.

The algorithm used depends on having two queues, one which is served in
increasing order of disk address, called x.up_q; and one which is served in decreasing

order of disk address, called x.down_q. Our algorithm works by adding requests to one

queue, and serving the other. We change direction whenever the queue for the current

direction is empty and the other queue is not empty.
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disk = serializer is
create,
request

rep = record[ increasing: bool,
up_q, down_q: priority queue,
disk: _disk]

create = proc () returns (cvt)
return (rep${increasing: true,
up_q. down_q: priority_queueScreate().
disk: _diskScreate())})
and create

request = proc (d: cvt, address: int, kind: int, p: page)
signals (bad_address, disk_error)

if d.increasing
then enqueue d.down_q
until) crowdSempty(d.c) &
(~d.increasing |
priority_queueSempty(d.up_q))
priority address
d.increasing := false
else enqueue d.up_q
until crowdSempty(d.c) &
(d.increasing |
priority_queueSempty(d.down_q))
priority -address
d.increasing := true
end

join d.c
_diskSrequest(d.disk, address, kind, p)
end resignal bad_address, disk_error
end request

end disk
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Appendix IV - Table of definitions

Page Definition or rule name

Occurs
Precedes
Same_trans
Excludes
Excludes_node

Node_excludes_node

Last

Front

Gains

Releases

Busy

Qsize

Csize

Rank
Rank_scan
Eval

Legal
Legal_step
Legal_dequeue
Head_enqueue
In_queue
In_same_queue
None_ready

Legal_transaction_step

Complete
Gain_complete

Corresponding_release

Release_follows
Join_complete
Leave_follows

Transaction order rule

Transitivity rule
PX from gain rule
PX from PX rule
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112:

112:
112:
113:
113:
114:
115;
116:
117:
118:
119:
119:
120:
121:
121:
121:
122:

Event before PX rule
Event after PX rule

GRE clause

GRE_def

GRE from empty rule
GRE from expression rule
GX from GRE rule

Event before GX rule
Event after GX rule

Event from FIFO rule
EVT and EVF meaning
EVF rule

EVT rule

EVT from conjunction rule
EVT from disjunction rule
EVF from conjunction rule
EVF from disjunction rule
Event from ready queue rule
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